x uchun yechish
x=1
x=2
Grafik
Baham ko'rish
Klipbordga nusxa olish
24x^{2}-72x+48=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-72\right)±\sqrt{\left(-72\right)^{2}-4\times 24\times 48}}{2\times 24}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 24 ni a, -72 ni b va 48 ni c bilan almashtiring.
x=\frac{-\left(-72\right)±\sqrt{5184-4\times 24\times 48}}{2\times 24}
-72 kvadratini chiqarish.
x=\frac{-\left(-72\right)±\sqrt{5184-96\times 48}}{2\times 24}
-4 ni 24 marotabaga ko'paytirish.
x=\frac{-\left(-72\right)±\sqrt{5184-4608}}{2\times 24}
-96 ni 48 marotabaga ko'paytirish.
x=\frac{-\left(-72\right)±\sqrt{576}}{2\times 24}
5184 ni -4608 ga qo'shish.
x=\frac{-\left(-72\right)±24}{2\times 24}
576 ning kvadrat ildizini chiqarish.
x=\frac{72±24}{2\times 24}
-72 ning teskarisi 72 ga teng.
x=\frac{72±24}{48}
2 ni 24 marotabaga ko'paytirish.
x=\frac{96}{48}
x=\frac{72±24}{48} tenglamasini yeching, bunda ± musbat. 72 ni 24 ga qo'shish.
x=2
96 ni 48 ga bo'lish.
x=\frac{48}{48}
x=\frac{72±24}{48} tenglamasini yeching, bunda ± manfiy. 72 dan 24 ni ayirish.
x=1
48 ni 48 ga bo'lish.
x=2 x=1
Tenglama yechildi.
24x^{2}-72x+48=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
24x^{2}-72x+48-48=-48
Tenglamaning ikkala tarafidan 48 ni ayirish.
24x^{2}-72x=-48
O‘zidan 48 ayirilsa 0 qoladi.
\frac{24x^{2}-72x}{24}=-\frac{48}{24}
Ikki tarafini 24 ga bo‘ling.
x^{2}+\left(-\frac{72}{24}\right)x=-\frac{48}{24}
24 ga bo'lish 24 ga ko'paytirishni bekor qiladi.
x^{2}-3x=-\frac{48}{24}
-72 ni 24 ga bo'lish.
x^{2}-3x=-2
-48 ni 24 ga bo'lish.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-2+\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-3x+\frac{9}{4}=-2+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
x^{2}-3x+\frac{9}{4}=\frac{1}{4}
-2 ni \frac{9}{4} ga qo'shish.
\left(x-\frac{3}{2}\right)^{2}=\frac{1}{4}
x^{2}-3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{2}=\frac{1}{2} x-\frac{3}{2}=-\frac{1}{2}
Qisqartirish.
x=2 x=1
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}