Asosiy tarkibga oʻtish
a uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

24a^{2}-60a+352=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
a=\frac{-\left(-60\right)±\sqrt{\left(-60\right)^{2}-4\times 24\times 352}}{2\times 24}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 24 ni a, -60 ni b va 352 ni c bilan almashtiring.
a=\frac{-\left(-60\right)±\sqrt{3600-4\times 24\times 352}}{2\times 24}
-60 kvadratini chiqarish.
a=\frac{-\left(-60\right)±\sqrt{3600-96\times 352}}{2\times 24}
-4 ni 24 marotabaga ko'paytirish.
a=\frac{-\left(-60\right)±\sqrt{3600-33792}}{2\times 24}
-96 ni 352 marotabaga ko'paytirish.
a=\frac{-\left(-60\right)±\sqrt{-30192}}{2\times 24}
3600 ni -33792 ga qo'shish.
a=\frac{-\left(-60\right)±4\sqrt{1887}i}{2\times 24}
-30192 ning kvadrat ildizini chiqarish.
a=\frac{60±4\sqrt{1887}i}{2\times 24}
-60 ning teskarisi 60 ga teng.
a=\frac{60±4\sqrt{1887}i}{48}
2 ni 24 marotabaga ko'paytirish.
a=\frac{60+4\sqrt{1887}i}{48}
a=\frac{60±4\sqrt{1887}i}{48} tenglamasini yeching, bunda ± musbat. 60 ni 4i\sqrt{1887} ga qo'shish.
a=\frac{\sqrt{1887}i}{12}+\frac{5}{4}
60+4i\sqrt{1887} ni 48 ga bo'lish.
a=\frac{-4\sqrt{1887}i+60}{48}
a=\frac{60±4\sqrt{1887}i}{48} tenglamasini yeching, bunda ± manfiy. 60 dan 4i\sqrt{1887} ni ayirish.
a=-\frac{\sqrt{1887}i}{12}+\frac{5}{4}
60-4i\sqrt{1887} ni 48 ga bo'lish.
a=\frac{\sqrt{1887}i}{12}+\frac{5}{4} a=-\frac{\sqrt{1887}i}{12}+\frac{5}{4}
Tenglama yechildi.
24a^{2}-60a+352=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
24a^{2}-60a+352-352=-352
Tenglamaning ikkala tarafidan 352 ni ayirish.
24a^{2}-60a=-352
O‘zidan 352 ayirilsa 0 qoladi.
\frac{24a^{2}-60a}{24}=-\frac{352}{24}
Ikki tarafini 24 ga bo‘ling.
a^{2}+\left(-\frac{60}{24}\right)a=-\frac{352}{24}
24 ga bo'lish 24 ga ko'paytirishni bekor qiladi.
a^{2}-\frac{5}{2}a=-\frac{352}{24}
\frac{-60}{24} ulushini 12 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
a^{2}-\frac{5}{2}a=-\frac{44}{3}
\frac{-352}{24} ulushini 8 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
a^{2}-\frac{5}{2}a+\left(-\frac{5}{4}\right)^{2}=-\frac{44}{3}+\left(-\frac{5}{4}\right)^{2}
-\frac{5}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{4} olish uchun. Keyin, -\frac{5}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
a^{2}-\frac{5}{2}a+\frac{25}{16}=-\frac{44}{3}+\frac{25}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{4} kvadratini chiqarish.
a^{2}-\frac{5}{2}a+\frac{25}{16}=-\frac{629}{48}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{44}{3} ni \frac{25}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(a-\frac{5}{4}\right)^{2}=-\frac{629}{48}
a^{2}-\frac{5}{2}a+\frac{25}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(a-\frac{5}{4}\right)^{2}}=\sqrt{-\frac{629}{48}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
a-\frac{5}{4}=\frac{\sqrt{1887}i}{12} a-\frac{5}{4}=-\frac{\sqrt{1887}i}{12}
Qisqartirish.
a=\frac{\sqrt{1887}i}{12}+\frac{5}{4} a=-\frac{\sqrt{1887}i}{12}+\frac{5}{4}
\frac{5}{4} ni tenglamaning ikkala tarafiga qo'shish.