x uchun yechish
x = -\frac{\sqrt{3 \sqrt{633} + 81}}{12} \approx -1,042427968
x = \frac{\sqrt{3 \sqrt{633} + 81}}{12} \approx 1,042427968
x=\frac{\sqrt{81-3\sqrt{633}}}{12}\approx 0,195816067
x=-\frac{\sqrt{81-3\sqrt{633}}}{12}\approx -0,195816067
Grafik
Baham ko'rish
Klipbordga nusxa olish
24x^{2}x^{2}+1=27x^{2}
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x^{2} ga ko'paytirish.
24x^{4}+1=27x^{2}
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 2 va 2 ni qo‘shib, 4 ni oling.
24x^{4}+1-27x^{2}=0
Ikkala tarafdan 27x^{2} ni ayirish.
24t^{2}-27t+1=0
x^{2} uchun t ni almashtiring.
t=\frac{-\left(-27\right)±\sqrt{\left(-27\right)^{2}-4\times 24\times 1}}{2\times 24}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun 24 ni, b uchun -27 ni va c uchun 1 ni ayiring.
t=\frac{27±\sqrt{633}}{48}
Hisoblarni amalga oshiring.
t=\frac{\sqrt{633}}{48}+\frac{9}{16} t=-\frac{\sqrt{633}}{48}+\frac{9}{16}
t=\frac{27±\sqrt{633}}{48} tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
x=\frac{\sqrt{\frac{\sqrt{633}}{3}+9}}{4} x=-\frac{\sqrt{\frac{\sqrt{633}}{3}+9}}{4} x=\frac{\sqrt{-\frac{\sqrt{633}}{3}+9}}{4} x=-\frac{\sqrt{-\frac{\sqrt{633}}{3}+9}}{4}
x=t^{2} boʻlganda, yechimlar har bir t uchun x=±\sqrt{t} hisoblanishi orqali olinadi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}