Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

24x^{2}x^{2}+1=27x^{2}
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x^{2} ga ko'paytirish.
24x^{4}+1=27x^{2}
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 2 va 2 ni qo‘shib, 4 ni oling.
24x^{4}+1-27x^{2}=0
Ikkala tarafdan 27x^{2} ni ayirish.
24t^{2}-27t+1=0
x^{2} uchun t ni almashtiring.
t=\frac{-\left(-27\right)±\sqrt{\left(-27\right)^{2}-4\times 24\times 1}}{2\times 24}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun 24 ni, b uchun -27 ni va c uchun 1 ni ayiring.
t=\frac{27±\sqrt{633}}{48}
Hisoblarni amalga oshiring.
t=\frac{\sqrt{633}}{48}+\frac{9}{16} t=-\frac{\sqrt{633}}{48}+\frac{9}{16}
t=\frac{27±\sqrt{633}}{48} tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
x=\frac{\sqrt{\frac{\sqrt{633}}{3}+9}}{4} x=-\frac{\sqrt{\frac{\sqrt{633}}{3}+9}}{4} x=\frac{\sqrt{-\frac{\sqrt{633}}{3}+9}}{4} x=-\frac{\sqrt{-\frac{\sqrt{633}}{3}+9}}{4}
x=t^{2} boʻlganda, yechimlar har bir t uchun x=±\sqrt{t} hisoblanishi orqali olinadi.