x uchun yechish
x\in (-\infty,-\frac{35}{23}]\cup [1,\infty)
Grafik
Baham ko'rish
Klipbordga nusxa olish
23x^{2}+12x-35=0
Tengsizlikni yechish uchun chap tomon faktorini hisoblang. Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-12±\sqrt{12^{2}-4\times 23\left(-35\right)}}{2\times 23}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun 23 ni, b uchun 12 ni va c uchun -35 ni ayiring.
x=\frac{-12±58}{46}
Hisoblarni amalga oshiring.
x=1 x=-\frac{35}{23}
x=\frac{-12±58}{46} tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
23\left(x-1\right)\left(x+\frac{35}{23}\right)\geq 0
Yechimlardan foydalanib tengsizlikni qaytadan yozing.
x-1\leq 0 x+\frac{35}{23}\leq 0
Koʻpaytma ≥0 boʻlishi uchun x-1 va x+\frac{35}{23} ikkalasi ≤0 yoki ≥0 boʻlishi kerak. x-1 va x+\frac{35}{23} ikkalasi ≤0 ga teng boʻlganda, yechimini toping.
x\leq -\frac{35}{23}
Ikkala tengsizlikning mos yechimi – x\leq -\frac{35}{23}.
x+\frac{35}{23}\geq 0 x-1\geq 0
x-1 va x+\frac{35}{23} ikkalasi ≥0 ga teng boʻlganda, yechimini toping.
x\geq 1
Ikkala tengsizlikning mos yechimi – x\geq 1.
x\leq -\frac{35}{23}\text{; }x\geq 1
Oxirgi yechim olingan yechimlarning birlashmasidir.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}