Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2222x^{2}+12x-23=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-12±\sqrt{12^{2}-4\times 2222\left(-23\right)}}{2\times 2222}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2222 ni a, 12 ni b va -23 ni c bilan almashtiring.
x=\frac{-12±\sqrt{144-4\times 2222\left(-23\right)}}{2\times 2222}
12 kvadratini chiqarish.
x=\frac{-12±\sqrt{144-8888\left(-23\right)}}{2\times 2222}
-4 ni 2222 marotabaga ko'paytirish.
x=\frac{-12±\sqrt{144+204424}}{2\times 2222}
-8888 ni -23 marotabaga ko'paytirish.
x=\frac{-12±\sqrt{204568}}{2\times 2222}
144 ni 204424 ga qo'shish.
x=\frac{-12±2\sqrt{51142}}{2\times 2222}
204568 ning kvadrat ildizini chiqarish.
x=\frac{-12±2\sqrt{51142}}{4444}
2 ni 2222 marotabaga ko'paytirish.
x=\frac{2\sqrt{51142}-12}{4444}
x=\frac{-12±2\sqrt{51142}}{4444} tenglamasini yeching, bunda ± musbat. -12 ni 2\sqrt{51142} ga qo'shish.
x=\frac{\sqrt{51142}}{2222}-\frac{3}{1111}
-12+2\sqrt{51142} ni 4444 ga bo'lish.
x=\frac{-2\sqrt{51142}-12}{4444}
x=\frac{-12±2\sqrt{51142}}{4444} tenglamasini yeching, bunda ± manfiy. -12 dan 2\sqrt{51142} ni ayirish.
x=-\frac{\sqrt{51142}}{2222}-\frac{3}{1111}
-12-2\sqrt{51142} ni 4444 ga bo'lish.
x=\frac{\sqrt{51142}}{2222}-\frac{3}{1111} x=-\frac{\sqrt{51142}}{2222}-\frac{3}{1111}
Tenglama yechildi.
2222x^{2}+12x-23=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2222x^{2}+12x-23-\left(-23\right)=-\left(-23\right)
23 ni tenglamaning ikkala tarafiga qo'shish.
2222x^{2}+12x=-\left(-23\right)
O‘zidan -23 ayirilsa 0 qoladi.
2222x^{2}+12x=23
0 dan -23 ni ayirish.
\frac{2222x^{2}+12x}{2222}=\frac{23}{2222}
Ikki tarafini 2222 ga bo‘ling.
x^{2}+\frac{12}{2222}x=\frac{23}{2222}
2222 ga bo'lish 2222 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{6}{1111}x=\frac{23}{2222}
\frac{12}{2222} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{6}{1111}x+\left(\frac{3}{1111}\right)^{2}=\frac{23}{2222}+\left(\frac{3}{1111}\right)^{2}
\frac{6}{1111} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{1111} olish uchun. Keyin, \frac{3}{1111} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{6}{1111}x+\frac{9}{1234321}=\frac{23}{2222}+\frac{9}{1234321}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{1111} kvadratini chiqarish.
x^{2}+\frac{6}{1111}x+\frac{9}{1234321}=\frac{25571}{2468642}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{23}{2222} ni \frac{9}{1234321} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{3}{1111}\right)^{2}=\frac{25571}{2468642}
x^{2}+\frac{6}{1111}x+\frac{9}{1234321} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{1111}\right)^{2}}=\sqrt{\frac{25571}{2468642}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{1111}=\frac{\sqrt{51142}}{2222} x+\frac{3}{1111}=-\frac{\sqrt{51142}}{2222}
Qisqartirish.
x=\frac{\sqrt{51142}}{2222}-\frac{3}{1111} x=-\frac{\sqrt{51142}}{2222}-\frac{3}{1111}
Tenglamaning ikkala tarafidan \frac{3}{1111} ni ayirish.