w uchun yechish
w>-\frac{25}{2}
Baham ko'rish
Klipbordga nusxa olish
w+13>\frac{11}{22}
Ikki tarafini 22 ga bo‘ling. 22 musbat bo‘lgani uchun, tengsizlik yo‘nalishi o‘zgarmaydi.
w+13>\frac{1}{2}
\frac{11}{22} ulushini 11 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
w>\frac{1}{2}-13
Ikkala tarafdan 13 ni ayirish.
w>\frac{1}{2}-\frac{26}{2}
13 ni \frac{26}{2} kasrga o‘giring.
w>\frac{1-26}{2}
\frac{1}{2} va \frac{26}{2} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
w>-\frac{25}{2}
-25 olish uchun 1 dan 26 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}