Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

219x^{2}-12x+4=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 219\times 4}}{2\times 219}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 219 ni a, -12 ni b va 4 ni c bilan almashtiring.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 219\times 4}}{2\times 219}
-12 kvadratini chiqarish.
x=\frac{-\left(-12\right)±\sqrt{144-876\times 4}}{2\times 219}
-4 ni 219 marotabaga ko'paytirish.
x=\frac{-\left(-12\right)±\sqrt{144-3504}}{2\times 219}
-876 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-12\right)±\sqrt{-3360}}{2\times 219}
144 ni -3504 ga qo'shish.
x=\frac{-\left(-12\right)±4\sqrt{210}i}{2\times 219}
-3360 ning kvadrat ildizini chiqarish.
x=\frac{12±4\sqrt{210}i}{2\times 219}
-12 ning teskarisi 12 ga teng.
x=\frac{12±4\sqrt{210}i}{438}
2 ni 219 marotabaga ko'paytirish.
x=\frac{12+4\sqrt{210}i}{438}
x=\frac{12±4\sqrt{210}i}{438} tenglamasini yeching, bunda ± musbat. 12 ni 4i\sqrt{210} ga qo'shish.
x=\frac{2\sqrt{210}i}{219}+\frac{2}{73}
12+4i\sqrt{210} ni 438 ga bo'lish.
x=\frac{-4\sqrt{210}i+12}{438}
x=\frac{12±4\sqrt{210}i}{438} tenglamasini yeching, bunda ± manfiy. 12 dan 4i\sqrt{210} ni ayirish.
x=-\frac{2\sqrt{210}i}{219}+\frac{2}{73}
12-4i\sqrt{210} ni 438 ga bo'lish.
x=\frac{2\sqrt{210}i}{219}+\frac{2}{73} x=-\frac{2\sqrt{210}i}{219}+\frac{2}{73}
Tenglama yechildi.
219x^{2}-12x+4=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
219x^{2}-12x+4-4=-4
Tenglamaning ikkala tarafidan 4 ni ayirish.
219x^{2}-12x=-4
O‘zidan 4 ayirilsa 0 qoladi.
\frac{219x^{2}-12x}{219}=-\frac{4}{219}
Ikki tarafini 219 ga bo‘ling.
x^{2}+\left(-\frac{12}{219}\right)x=-\frac{4}{219}
219 ga bo'lish 219 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{4}{73}x=-\frac{4}{219}
\frac{-12}{219} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{4}{73}x+\left(-\frac{2}{73}\right)^{2}=-\frac{4}{219}+\left(-\frac{2}{73}\right)^{2}
-\frac{4}{73} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{2}{73} olish uchun. Keyin, -\frac{2}{73} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{4}{73}x+\frac{4}{5329}=-\frac{4}{219}+\frac{4}{5329}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{2}{73} kvadratini chiqarish.
x^{2}-\frac{4}{73}x+\frac{4}{5329}=-\frac{280}{15987}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{4}{219} ni \frac{4}{5329} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{2}{73}\right)^{2}=-\frac{280}{15987}
x^{2}-\frac{4}{73}x+\frac{4}{5329} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{2}{73}\right)^{2}}=\sqrt{-\frac{280}{15987}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{2}{73}=\frac{2\sqrt{210}i}{219} x-\frac{2}{73}=-\frac{2\sqrt{210}i}{219}
Qisqartirish.
x=\frac{2\sqrt{210}i}{219}+\frac{2}{73} x=-\frac{2\sqrt{210}i}{219}+\frac{2}{73}
\frac{2}{73} ni tenglamaning ikkala tarafiga qo'shish.