Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

21x^{2}-6x=13
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
21x^{2}-6x-13=13-13
Tenglamaning ikkala tarafidan 13 ni ayirish.
21x^{2}-6x-13=0
O‘zidan 13 ayirilsa 0 qoladi.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 21\left(-13\right)}}{2\times 21}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 21 ni a, -6 ni b va -13 ni c bilan almashtiring.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 21\left(-13\right)}}{2\times 21}
-6 kvadratini chiqarish.
x=\frac{-\left(-6\right)±\sqrt{36-84\left(-13\right)}}{2\times 21}
-4 ni 21 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{36+1092}}{2\times 21}
-84 ni -13 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{1128}}{2\times 21}
36 ni 1092 ga qo'shish.
x=\frac{-\left(-6\right)±2\sqrt{282}}{2\times 21}
1128 ning kvadrat ildizini chiqarish.
x=\frac{6±2\sqrt{282}}{2\times 21}
-6 ning teskarisi 6 ga teng.
x=\frac{6±2\sqrt{282}}{42}
2 ni 21 marotabaga ko'paytirish.
x=\frac{2\sqrt{282}+6}{42}
x=\frac{6±2\sqrt{282}}{42} tenglamasini yeching, bunda ± musbat. 6 ni 2\sqrt{282} ga qo'shish.
x=\frac{\sqrt{282}}{21}+\frac{1}{7}
6+2\sqrt{282} ni 42 ga bo'lish.
x=\frac{6-2\sqrt{282}}{42}
x=\frac{6±2\sqrt{282}}{42} tenglamasini yeching, bunda ± manfiy. 6 dan 2\sqrt{282} ni ayirish.
x=-\frac{\sqrt{282}}{21}+\frac{1}{7}
6-2\sqrt{282} ni 42 ga bo'lish.
x=\frac{\sqrt{282}}{21}+\frac{1}{7} x=-\frac{\sqrt{282}}{21}+\frac{1}{7}
Tenglama yechildi.
21x^{2}-6x=13
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{21x^{2}-6x}{21}=\frac{13}{21}
Ikki tarafini 21 ga bo‘ling.
x^{2}+\left(-\frac{6}{21}\right)x=\frac{13}{21}
21 ga bo'lish 21 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{2}{7}x=\frac{13}{21}
\frac{-6}{21} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{2}{7}x+\left(-\frac{1}{7}\right)^{2}=\frac{13}{21}+\left(-\frac{1}{7}\right)^{2}
-\frac{2}{7} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{7} olish uchun. Keyin, -\frac{1}{7} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{2}{7}x+\frac{1}{49}=\frac{13}{21}+\frac{1}{49}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{7} kvadratini chiqarish.
x^{2}-\frac{2}{7}x+\frac{1}{49}=\frac{94}{147}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{13}{21} ni \frac{1}{49} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{7}\right)^{2}=\frac{94}{147}
x^{2}-\frac{2}{7}x+\frac{1}{49} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{7}\right)^{2}}=\sqrt{\frac{94}{147}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{7}=\frac{\sqrt{282}}{21} x-\frac{1}{7}=-\frac{\sqrt{282}}{21}
Qisqartirish.
x=\frac{\sqrt{282}}{21}+\frac{1}{7} x=-\frac{\sqrt{282}}{21}+\frac{1}{7}
\frac{1}{7} ni tenglamaning ikkala tarafiga qo'shish.