Omil
\left(7x-1\right)\left(3x+2\right)
Baholash
\left(7x-1\right)\left(3x+2\right)
Grafik
Baham ko'rish
Klipbordga nusxa olish
a+b=11 ab=21\left(-2\right)=-42
Ifodani guruhlash orqali faktorlang. Avvalo, ifoda 21x^{2}+ax+bx-2 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,42 -2,21 -3,14 -6,7
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b musbat boʻlganda, musbat sonda manfiyga nisbatdan kattaroq mutlaq qiymat bor. -42-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1+42=41 -2+21=19 -3+14=11 -6+7=1
Har bir juftlik yigʻindisini hisoblang.
a=-3 b=14
Yechim – 11 yigʻindisini beruvchi juftlik.
\left(21x^{2}-3x\right)+\left(14x-2\right)
21x^{2}+11x-2 ni \left(21x^{2}-3x\right)+\left(14x-2\right) sifatida qaytadan yozish.
3x\left(7x-1\right)+2\left(7x-1\right)
Birinchi guruhda 3x ni va ikkinchi guruhda 2 ni faktordan chiqaring.
\left(7x-1\right)\left(3x+2\right)
Distributiv funktsiyasidan foydalangan holda 7x-1 umumiy terminini chiqaring.
21x^{2}+11x-2=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-11±\sqrt{11^{2}-4\times 21\left(-2\right)}}{2\times 21}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-11±\sqrt{121-4\times 21\left(-2\right)}}{2\times 21}
11 kvadratini chiqarish.
x=\frac{-11±\sqrt{121-84\left(-2\right)}}{2\times 21}
-4 ni 21 marotabaga ko'paytirish.
x=\frac{-11±\sqrt{121+168}}{2\times 21}
-84 ni -2 marotabaga ko'paytirish.
x=\frac{-11±\sqrt{289}}{2\times 21}
121 ni 168 ga qo'shish.
x=\frac{-11±17}{2\times 21}
289 ning kvadrat ildizini chiqarish.
x=\frac{-11±17}{42}
2 ni 21 marotabaga ko'paytirish.
x=\frac{6}{42}
x=\frac{-11±17}{42} tenglamasini yeching, bunda ± musbat. -11 ni 17 ga qo'shish.
x=\frac{1}{7}
\frac{6}{42} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{28}{42}
x=\frac{-11±17}{42} tenglamasini yeching, bunda ± manfiy. -11 dan 17 ni ayirish.
x=-\frac{2}{3}
\frac{-28}{42} ulushini 14 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
21x^{2}+11x-2=21\left(x-\frac{1}{7}\right)\left(x-\left(-\frac{2}{3}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{1}{7} ga va x_{2} uchun -\frac{2}{3} ga bo‘ling.
21x^{2}+11x-2=21\left(x-\frac{1}{7}\right)\left(x+\frac{2}{3}\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.
21x^{2}+11x-2=21\times \frac{7x-1}{7}\left(x+\frac{2}{3}\right)
Umumiy maxrajni topib va suratlarni ayirib \frac{1}{7} ni x dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
21x^{2}+11x-2=21\times \frac{7x-1}{7}\times \frac{3x+2}{3}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{2}{3} ni x ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
21x^{2}+11x-2=21\times \frac{\left(7x-1\right)\left(3x+2\right)}{7\times 3}
Raqamlash sonlarini va maxraj sonlariga ko'paytirish orqali \frac{7x-1}{7} ni \frac{3x+2}{3} ga ko'paytirish. So'ngra kasrni imkoni boricha eng kam a'zoga qisqartiring.
21x^{2}+11x-2=21\times \frac{\left(7x-1\right)\left(3x+2\right)}{21}
7 ni 3 marotabaga ko'paytirish.
21x^{2}+11x-2=\left(7x-1\right)\left(3x+2\right)
21 va 21 ichida eng katta umumiy 21 faktorini bekor qiling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}