x uchun yechish
x = \frac{12}{7} = 1\frac{5}{7} \approx 1,714285714
x = \frac{7}{3} = 2\frac{1}{3} \approx 2,333333333
Grafik
Baham ko'rish
Klipbordga nusxa olish
21\left(x^{2}-4x+4\right)-\left(x-2\right)=2
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-2\right)^{2} kengaytirilishi uchun ishlating.
21x^{2}-84x+84-\left(x-2\right)=2
21 ga x^{2}-4x+4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
21x^{2}-84x+84-x+2=2
x-2 teskarisini topish uchun har birining teskarisini toping.
21x^{2}-85x+84+2=2
-85x ni olish uchun -84x va -x ni birlashtirish.
21x^{2}-85x+86=2
86 olish uchun 84 va 2'ni qo'shing.
21x^{2}-85x+86-2=0
Ikkala tarafdan 2 ni ayirish.
21x^{2}-85x+84=0
84 olish uchun 86 dan 2 ni ayirish.
x=\frac{-\left(-85\right)±\sqrt{\left(-85\right)^{2}-4\times 21\times 84}}{2\times 21}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 21 ni a, -85 ni b va 84 ni c bilan almashtiring.
x=\frac{-\left(-85\right)±\sqrt{7225-4\times 21\times 84}}{2\times 21}
-85 kvadratini chiqarish.
x=\frac{-\left(-85\right)±\sqrt{7225-84\times 84}}{2\times 21}
-4 ni 21 marotabaga ko'paytirish.
x=\frac{-\left(-85\right)±\sqrt{7225-7056}}{2\times 21}
-84 ni 84 marotabaga ko'paytirish.
x=\frac{-\left(-85\right)±\sqrt{169}}{2\times 21}
7225 ni -7056 ga qo'shish.
x=\frac{-\left(-85\right)±13}{2\times 21}
169 ning kvadrat ildizini chiqarish.
x=\frac{85±13}{2\times 21}
-85 ning teskarisi 85 ga teng.
x=\frac{85±13}{42}
2 ni 21 marotabaga ko'paytirish.
x=\frac{98}{42}
x=\frac{85±13}{42} tenglamasini yeching, bunda ± musbat. 85 ni 13 ga qo'shish.
x=\frac{7}{3}
\frac{98}{42} ulushini 14 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{72}{42}
x=\frac{85±13}{42} tenglamasini yeching, bunda ± manfiy. 85 dan 13 ni ayirish.
x=\frac{12}{7}
\frac{72}{42} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{7}{3} x=\frac{12}{7}
Tenglama yechildi.
21\left(x^{2}-4x+4\right)-\left(x-2\right)=2
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-2\right)^{2} kengaytirilishi uchun ishlating.
21x^{2}-84x+84-\left(x-2\right)=2
21 ga x^{2}-4x+4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
21x^{2}-84x+84-x+2=2
x-2 teskarisini topish uchun har birining teskarisini toping.
21x^{2}-85x+84+2=2
-85x ni olish uchun -84x va -x ni birlashtirish.
21x^{2}-85x+86=2
86 olish uchun 84 va 2'ni qo'shing.
21x^{2}-85x=2-86
Ikkala tarafdan 86 ni ayirish.
21x^{2}-85x=-84
-84 olish uchun 2 dan 86 ni ayirish.
\frac{21x^{2}-85x}{21}=-\frac{84}{21}
Ikki tarafini 21 ga bo‘ling.
x^{2}-\frac{85}{21}x=-\frac{84}{21}
21 ga bo'lish 21 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{85}{21}x=-4
-84 ni 21 ga bo'lish.
x^{2}-\frac{85}{21}x+\left(-\frac{85}{42}\right)^{2}=-4+\left(-\frac{85}{42}\right)^{2}
-\frac{85}{21} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{85}{42} olish uchun. Keyin, -\frac{85}{42} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{85}{21}x+\frac{7225}{1764}=-4+\frac{7225}{1764}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{85}{42} kvadratini chiqarish.
x^{2}-\frac{85}{21}x+\frac{7225}{1764}=\frac{169}{1764}
-4 ni \frac{7225}{1764} ga qo'shish.
\left(x-\frac{85}{42}\right)^{2}=\frac{169}{1764}
x^{2}-\frac{85}{21}x+\frac{7225}{1764} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{85}{42}\right)^{2}}=\sqrt{\frac{169}{1764}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{85}{42}=\frac{13}{42} x-\frac{85}{42}=-\frac{13}{42}
Qisqartirish.
x=\frac{7}{3} x=\frac{12}{7}
\frac{85}{42} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}