20x=64-2( { x }^{ 2 }
x uchun yechish (complex solution)
x=\sqrt{57}-5\approx 2,549834435
x=-\left(\sqrt{57}+5\right)\approx -12,549834435
x uchun yechish
x=\sqrt{57}-5\approx 2,549834435
x=-\sqrt{57}-5\approx -12,549834435
Grafik
Baham ko'rish
Klipbordga nusxa olish
20x-64=-2x^{2}
Ikkala tarafdan 64 ni ayirish.
20x-64+2x^{2}=0
2x^{2} ni ikki tarafga qo’shing.
2x^{2}+20x-64=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-20±\sqrt{20^{2}-4\times 2\left(-64\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 20 ni b va -64 ni c bilan almashtiring.
x=\frac{-20±\sqrt{400-4\times 2\left(-64\right)}}{2\times 2}
20 kvadratini chiqarish.
x=\frac{-20±\sqrt{400-8\left(-64\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-20±\sqrt{400+512}}{2\times 2}
-8 ni -64 marotabaga ko'paytirish.
x=\frac{-20±\sqrt{912}}{2\times 2}
400 ni 512 ga qo'shish.
x=\frac{-20±4\sqrt{57}}{2\times 2}
912 ning kvadrat ildizini chiqarish.
x=\frac{-20±4\sqrt{57}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{4\sqrt{57}-20}{4}
x=\frac{-20±4\sqrt{57}}{4} tenglamasini yeching, bunda ± musbat. -20 ni 4\sqrt{57} ga qo'shish.
x=\sqrt{57}-5
-20+4\sqrt{57} ni 4 ga bo'lish.
x=\frac{-4\sqrt{57}-20}{4}
x=\frac{-20±4\sqrt{57}}{4} tenglamasini yeching, bunda ± manfiy. -20 dan 4\sqrt{57} ni ayirish.
x=-\sqrt{57}-5
-20-4\sqrt{57} ni 4 ga bo'lish.
x=\sqrt{57}-5 x=-\sqrt{57}-5
Tenglama yechildi.
20x+2x^{2}=64
2x^{2} ni ikki tarafga qo’shing.
2x^{2}+20x=64
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{2x^{2}+20x}{2}=\frac{64}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\frac{20}{2}x=\frac{64}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}+10x=\frac{64}{2}
20 ni 2 ga bo'lish.
x^{2}+10x=32
64 ni 2 ga bo'lish.
x^{2}+10x+5^{2}=32+5^{2}
10 ni bo‘lish, x shartining koeffitsienti, 2 ga 5 olish uchun. Keyin, 5 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+10x+25=32+25
5 kvadratini chiqarish.
x^{2}+10x+25=57
32 ni 25 ga qo'shish.
\left(x+5\right)^{2}=57
x^{2}+10x+25 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+5\right)^{2}}=\sqrt{57}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+5=\sqrt{57} x+5=-\sqrt{57}
Qisqartirish.
x=\sqrt{57}-5 x=-\sqrt{57}-5
Tenglamaning ikkala tarafidan 5 ni ayirish.
20x-64=-2x^{2}
Ikkala tarafdan 64 ni ayirish.
20x-64+2x^{2}=0
2x^{2} ni ikki tarafga qo’shing.
2x^{2}+20x-64=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-20±\sqrt{20^{2}-4\times 2\left(-64\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 20 ni b va -64 ni c bilan almashtiring.
x=\frac{-20±\sqrt{400-4\times 2\left(-64\right)}}{2\times 2}
20 kvadratini chiqarish.
x=\frac{-20±\sqrt{400-8\left(-64\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-20±\sqrt{400+512}}{2\times 2}
-8 ni -64 marotabaga ko'paytirish.
x=\frac{-20±\sqrt{912}}{2\times 2}
400 ni 512 ga qo'shish.
x=\frac{-20±4\sqrt{57}}{2\times 2}
912 ning kvadrat ildizini chiqarish.
x=\frac{-20±4\sqrt{57}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{4\sqrt{57}-20}{4}
x=\frac{-20±4\sqrt{57}}{4} tenglamasini yeching, bunda ± musbat. -20 ni 4\sqrt{57} ga qo'shish.
x=\sqrt{57}-5
-20+4\sqrt{57} ni 4 ga bo'lish.
x=\frac{-4\sqrt{57}-20}{4}
x=\frac{-20±4\sqrt{57}}{4} tenglamasini yeching, bunda ± manfiy. -20 dan 4\sqrt{57} ni ayirish.
x=-\sqrt{57}-5
-20-4\sqrt{57} ni 4 ga bo'lish.
x=\sqrt{57}-5 x=-\sqrt{57}-5
Tenglama yechildi.
20x+2x^{2}=64
2x^{2} ni ikki tarafga qo’shing.
2x^{2}+20x=64
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{2x^{2}+20x}{2}=\frac{64}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\frac{20}{2}x=\frac{64}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}+10x=\frac{64}{2}
20 ni 2 ga bo'lish.
x^{2}+10x=32
64 ni 2 ga bo'lish.
x^{2}+10x+5^{2}=32+5^{2}
10 ni bo‘lish, x shartining koeffitsienti, 2 ga 5 olish uchun. Keyin, 5 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+10x+25=32+25
5 kvadratini chiqarish.
x^{2}+10x+25=57
32 ni 25 ga qo'shish.
\left(x+5\right)^{2}=57
x^{2}+10x+25 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+5\right)^{2}}=\sqrt{57}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+5=\sqrt{57} x+5=-\sqrt{57}
Qisqartirish.
x=\sqrt{57}-5 x=-\sqrt{57}-5
Tenglamaning ikkala tarafidan 5 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}