x uchun yechish
x=5
x=0
Grafik
Baham ko'rish
Klipbordga nusxa olish
40x=8x^{2}
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
40x-8x^{2}=0
Ikkala tarafdan 8x^{2} ni ayirish.
x\left(40-8x\right)=0
x omili.
x=0 x=5
Tenglamani yechish uchun x=0 va 40-8x=0 ni yeching.
40x=8x^{2}
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
40x-8x^{2}=0
Ikkala tarafdan 8x^{2} ni ayirish.
-8x^{2}+40x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-40±\sqrt{40^{2}}}{2\left(-8\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -8 ni a, 40 ni b va 0 ni c bilan almashtiring.
x=\frac{-40±40}{2\left(-8\right)}
40^{2} ning kvadrat ildizini chiqarish.
x=\frac{-40±40}{-16}
2 ni -8 marotabaga ko'paytirish.
x=\frac{0}{-16}
x=\frac{-40±40}{-16} tenglamasini yeching, bunda ± musbat. -40 ni 40 ga qo'shish.
x=0
0 ni -16 ga bo'lish.
x=-\frac{80}{-16}
x=\frac{-40±40}{-16} tenglamasini yeching, bunda ± manfiy. -40 dan 40 ni ayirish.
x=5
-80 ni -16 ga bo'lish.
x=0 x=5
Tenglama yechildi.
40x=8x^{2}
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
40x-8x^{2}=0
Ikkala tarafdan 8x^{2} ni ayirish.
-8x^{2}+40x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-8x^{2}+40x}{-8}=\frac{0}{-8}
Ikki tarafini -8 ga bo‘ling.
x^{2}+\frac{40}{-8}x=\frac{0}{-8}
-8 ga bo'lish -8 ga ko'paytirishni bekor qiladi.
x^{2}-5x=\frac{0}{-8}
40 ni -8 ga bo'lish.
x^{2}-5x=0
0 ni -8 ga bo'lish.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=\left(-\frac{5}{2}\right)^{2}
-5 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{2} olish uchun. Keyin, -\frac{5}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-5x+\frac{25}{4}=\frac{25}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{2} kvadratini chiqarish.
\left(x-\frac{5}{2}\right)^{2}=\frac{25}{4}
x^{2}-5x+\frac{25}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{5}{2}=\frac{5}{2} x-\frac{5}{2}=-\frac{5}{2}
Qisqartirish.
x=5 x=0
\frac{5}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}