Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}+20x+10=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-20±\sqrt{20^{2}-4\times 2\times 10}}{2\times 2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-20±\sqrt{400-4\times 2\times 10}}{2\times 2}
20 kvadratini chiqarish.
x=\frac{-20±\sqrt{400-8\times 10}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-20±\sqrt{400-80}}{2\times 2}
-8 ni 10 marotabaga ko'paytirish.
x=\frac{-20±\sqrt{320}}{2\times 2}
400 ni -80 ga qo'shish.
x=\frac{-20±8\sqrt{5}}{2\times 2}
320 ning kvadrat ildizini chiqarish.
x=\frac{-20±8\sqrt{5}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{8\sqrt{5}-20}{4}
x=\frac{-20±8\sqrt{5}}{4} tenglamasini yeching, bunda ± musbat. -20 ni 8\sqrt{5} ga qo'shish.
x=2\sqrt{5}-5
-20+8\sqrt{5} ni 4 ga bo'lish.
x=\frac{-8\sqrt{5}-20}{4}
x=\frac{-20±8\sqrt{5}}{4} tenglamasini yeching, bunda ± manfiy. -20 dan 8\sqrt{5} ni ayirish.
x=-2\sqrt{5}-5
-20-8\sqrt{5} ni 4 ga bo'lish.
2x^{2}+20x+10=2\left(x-\left(2\sqrt{5}-5\right)\right)\left(x-\left(-2\sqrt{5}-5\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -5+2\sqrt{5} ga va x_{2} uchun -5-2\sqrt{5} ga bo‘ling.