x uchun yechish
x=-\frac{15y}{2}+95
y uchun yechish
y=-\frac{2x}{15}+\frac{38}{3}
Grafik
Baham ko'rish
Klipbordga nusxa olish
2000-20x+150\left(100-y\right)=15100
20 ga 100-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2000-20x+15000-150y=15100
150 ga 100-y ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
17000-20x-150y=15100
17000 olish uchun 2000 va 15000'ni qo'shing.
-20x-150y=15100-17000
Ikkala tarafdan 17000 ni ayirish.
-20x-150y=-1900
-1900 olish uchun 15100 dan 17000 ni ayirish.
-20x=-1900+150y
150y ni ikki tarafga qo’shing.
-20x=150y-1900
Tenglama standart shaklda.
\frac{-20x}{-20}=\frac{150y-1900}{-20}
Ikki tarafini -20 ga bo‘ling.
x=\frac{150y-1900}{-20}
-20 ga bo'lish -20 ga ko'paytirishni bekor qiladi.
x=-\frac{15y}{2}+95
-1900+150y ni -20 ga bo'lish.
2000-20x+150\left(100-y\right)=15100
20 ga 100-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2000-20x+15000-150y=15100
150 ga 100-y ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
17000-20x-150y=15100
17000 olish uchun 2000 va 15000'ni qo'shing.
-20x-150y=15100-17000
Ikkala tarafdan 17000 ni ayirish.
-20x-150y=-1900
-1900 olish uchun 15100 dan 17000 ni ayirish.
-150y=-1900+20x
20x ni ikki tarafga qo’shing.
-150y=20x-1900
Tenglama standart shaklda.
\frac{-150y}{-150}=\frac{20x-1900}{-150}
Ikki tarafini -150 ga bo‘ling.
y=\frac{20x-1900}{-150}
-150 ga bo'lish -150 ga ko'paytirishni bekor qiladi.
y=-\frac{2x}{15}+\frac{38}{3}
-1900+20x ni -150 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}