Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

20t^{2}+t-2=0
x^{2} uchun t ni almashtiring.
t=\frac{-1±\sqrt{1^{2}-4\times 20\left(-2\right)}}{2\times 20}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun 20 ni, b uchun 1 ni va c uchun -2 ni ayiring.
t=\frac{-1±\sqrt{161}}{40}
Hisoblarni amalga oshiring.
t=\frac{\sqrt{161}-1}{40} t=\frac{-\sqrt{161}-1}{40}
t=\frac{-1±\sqrt{161}}{40} tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
x=-\sqrt{\frac{\sqrt{161}-1}{40}} x=\sqrt{\frac{\sqrt{161}-1}{40}} x=-i\sqrt{\frac{\sqrt{161}+1}{40}} x=i\sqrt{\frac{\sqrt{161}+1}{40}}
x=t^{2} boʻlganda, yechimlar har bir t uchun x=±\sqrt{t} hisoblanishi orqali olinadi.
20t^{2}+t-2=0
x^{2} uchun t ni almashtiring.
t=\frac{-1±\sqrt{1^{2}-4\times 20\left(-2\right)}}{2\times 20}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun 20 ni, b uchun 1 ni va c uchun -2 ni ayiring.
t=\frac{-1±\sqrt{161}}{40}
Hisoblarni amalga oshiring.
t=\frac{\sqrt{161}-1}{40} t=\frac{-\sqrt{161}-1}{40}
t=\frac{-1±\sqrt{161}}{40} tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
x=\frac{\sqrt{\frac{\sqrt{161}-1}{10}}}{2} x=-\frac{\sqrt{\frac{\sqrt{161}-1}{10}}}{2}
x=t^{2} boʻlganda, yechimlar musbat t uchun x=±\sqrt{t} hisoblanishi orqali olinadi.