Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

a+b=-9 ab=20\left(-81\right)=-1620
Ifodani guruhlash orqali faktorlang. Avvalo, ifoda 20x^{2}+ax+bx-81 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-1620 2,-810 3,-540 4,-405 5,-324 6,-270 9,-180 10,-162 12,-135 15,-108 18,-90 20,-81 27,-60 30,-54 36,-45
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -1620-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-1620=-1619 2-810=-808 3-540=-537 4-405=-401 5-324=-319 6-270=-264 9-180=-171 10-162=-152 12-135=-123 15-108=-93 18-90=-72 20-81=-61 27-60=-33 30-54=-24 36-45=-9
Har bir juftlik yigʻindisini hisoblang.
a=-45 b=36
Yechim – -9 yigʻindisini beruvchi juftlik.
\left(20x^{2}-45x\right)+\left(36x-81\right)
20x^{2}-9x-81 ni \left(20x^{2}-45x\right)+\left(36x-81\right) sifatida qaytadan yozish.
5x\left(4x-9\right)+9\left(4x-9\right)
Birinchi guruhda 5x ni va ikkinchi guruhda 9 ni faktordan chiqaring.
\left(4x-9\right)\left(5x+9\right)
Distributiv funktsiyasidan foydalangan holda 4x-9 umumiy terminini chiqaring.
20x^{2}-9x-81=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 20\left(-81\right)}}{2\times 20}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 20\left(-81\right)}}{2\times 20}
-9 kvadratini chiqarish.
x=\frac{-\left(-9\right)±\sqrt{81-80\left(-81\right)}}{2\times 20}
-4 ni 20 marotabaga ko'paytirish.
x=\frac{-\left(-9\right)±\sqrt{81+6480}}{2\times 20}
-80 ni -81 marotabaga ko'paytirish.
x=\frac{-\left(-9\right)±\sqrt{6561}}{2\times 20}
81 ni 6480 ga qo'shish.
x=\frac{-\left(-9\right)±81}{2\times 20}
6561 ning kvadrat ildizini chiqarish.
x=\frac{9±81}{2\times 20}
-9 ning teskarisi 9 ga teng.
x=\frac{9±81}{40}
2 ni 20 marotabaga ko'paytirish.
x=\frac{90}{40}
x=\frac{9±81}{40} tenglamasini yeching, bunda ± musbat. 9 ni 81 ga qo'shish.
x=\frac{9}{4}
\frac{90}{40} ulushini 10 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{72}{40}
x=\frac{9±81}{40} tenglamasini yeching, bunda ± manfiy. 9 dan 81 ni ayirish.
x=-\frac{9}{5}
\frac{-72}{40} ulushini 8 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
20x^{2}-9x-81=20\left(x-\frac{9}{4}\right)\left(x-\left(-\frac{9}{5}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{9}{4} ga va x_{2} uchun -\frac{9}{5} ga bo‘ling.
20x^{2}-9x-81=20\left(x-\frac{9}{4}\right)\left(x+\frac{9}{5}\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.
20x^{2}-9x-81=20\times \frac{4x-9}{4}\left(x+\frac{9}{5}\right)
Umumiy maxrajni topib va suratlarni ayirib \frac{9}{4} ni x dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
20x^{2}-9x-81=20\times \frac{4x-9}{4}\times \frac{5x+9}{5}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{9}{5} ni x ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
20x^{2}-9x-81=20\times \frac{\left(4x-9\right)\left(5x+9\right)}{4\times 5}
Raqamlash sonlarini va maxraj sonlariga ko'paytirish orqali \frac{4x-9}{4} ni \frac{5x+9}{5} ga ko'paytirish. So'ngra kasrni imkoni boricha eng kam a'zoga qisqartiring.
20x^{2}-9x-81=20\times \frac{\left(4x-9\right)\left(5x+9\right)}{20}
4 ni 5 marotabaga ko'paytirish.
20x^{2}-9x-81=\left(4x-9\right)\left(5x+9\right)
20 va 20 ichida eng katta umumiy 20 faktorini bekor qiling.