x uchun yechish
x = \frac{3 \sqrt{6} + 7}{10} \approx 1,434846923
x=\frac{7-3\sqrt{6}}{10}\approx -0,034846923
Grafik
Baham ko'rish
Klipbordga nusxa olish
20x^{2}-28x-1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}-4\times 20\left(-1\right)}}{2\times 20}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 20 ni a, -28 ni b va -1 ni c bilan almashtiring.
x=\frac{-\left(-28\right)±\sqrt{784-4\times 20\left(-1\right)}}{2\times 20}
-28 kvadratini chiqarish.
x=\frac{-\left(-28\right)±\sqrt{784-80\left(-1\right)}}{2\times 20}
-4 ni 20 marotabaga ko'paytirish.
x=\frac{-\left(-28\right)±\sqrt{784+80}}{2\times 20}
-80 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-28\right)±\sqrt{864}}{2\times 20}
784 ni 80 ga qo'shish.
x=\frac{-\left(-28\right)±12\sqrt{6}}{2\times 20}
864 ning kvadrat ildizini chiqarish.
x=\frac{28±12\sqrt{6}}{2\times 20}
-28 ning teskarisi 28 ga teng.
x=\frac{28±12\sqrt{6}}{40}
2 ni 20 marotabaga ko'paytirish.
x=\frac{12\sqrt{6}+28}{40}
x=\frac{28±12\sqrt{6}}{40} tenglamasini yeching, bunda ± musbat. 28 ni 12\sqrt{6} ga qo'shish.
x=\frac{3\sqrt{6}+7}{10}
28+12\sqrt{6} ni 40 ga bo'lish.
x=\frac{28-12\sqrt{6}}{40}
x=\frac{28±12\sqrt{6}}{40} tenglamasini yeching, bunda ± manfiy. 28 dan 12\sqrt{6} ni ayirish.
x=\frac{7-3\sqrt{6}}{10}
28-12\sqrt{6} ni 40 ga bo'lish.
x=\frac{3\sqrt{6}+7}{10} x=\frac{7-3\sqrt{6}}{10}
Tenglama yechildi.
20x^{2}-28x-1=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
20x^{2}-28x-1-\left(-1\right)=-\left(-1\right)
1 ni tenglamaning ikkala tarafiga qo'shish.
20x^{2}-28x=-\left(-1\right)
O‘zidan -1 ayirilsa 0 qoladi.
20x^{2}-28x=1
0 dan -1 ni ayirish.
\frac{20x^{2}-28x}{20}=\frac{1}{20}
Ikki tarafini 20 ga bo‘ling.
x^{2}+\left(-\frac{28}{20}\right)x=\frac{1}{20}
20 ga bo'lish 20 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{7}{5}x=\frac{1}{20}
\frac{-28}{20} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{7}{5}x+\left(-\frac{7}{10}\right)^{2}=\frac{1}{20}+\left(-\frac{7}{10}\right)^{2}
-\frac{7}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{7}{10} olish uchun. Keyin, -\frac{7}{10} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{7}{5}x+\frac{49}{100}=\frac{1}{20}+\frac{49}{100}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{7}{10} kvadratini chiqarish.
x^{2}-\frac{7}{5}x+\frac{49}{100}=\frac{27}{50}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{20} ni \frac{49}{100} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{7}{10}\right)^{2}=\frac{27}{50}
x^{2}-\frac{7}{5}x+\frac{49}{100} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{7}{10}\right)^{2}}=\sqrt{\frac{27}{50}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{7}{10}=\frac{3\sqrt{6}}{10} x-\frac{7}{10}=-\frac{3\sqrt{6}}{10}
Qisqartirish.
x=\frac{3\sqrt{6}+7}{10} x=\frac{7-3\sqrt{6}}{10}
\frac{7}{10} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}