Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

20x^{2}-157x+222=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-157\right)±\sqrt{\left(-157\right)^{2}-4\times 20\times 222}}{2\times 20}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 20 ni a, -157 ni b va 222 ni c bilan almashtiring.
x=\frac{-\left(-157\right)±\sqrt{24649-4\times 20\times 222}}{2\times 20}
-157 kvadratini chiqarish.
x=\frac{-\left(-157\right)±\sqrt{24649-80\times 222}}{2\times 20}
-4 ni 20 marotabaga ko'paytirish.
x=\frac{-\left(-157\right)±\sqrt{24649-17760}}{2\times 20}
-80 ni 222 marotabaga ko'paytirish.
x=\frac{-\left(-157\right)±\sqrt{6889}}{2\times 20}
24649 ni -17760 ga qo'shish.
x=\frac{-\left(-157\right)±83}{2\times 20}
6889 ning kvadrat ildizini chiqarish.
x=\frac{157±83}{2\times 20}
-157 ning teskarisi 157 ga teng.
x=\frac{157±83}{40}
2 ni 20 marotabaga ko'paytirish.
x=\frac{240}{40}
x=\frac{157±83}{40} tenglamasini yeching, bunda ± musbat. 157 ni 83 ga qo'shish.
x=6
240 ni 40 ga bo'lish.
x=\frac{74}{40}
x=\frac{157±83}{40} tenglamasini yeching, bunda ± manfiy. 157 dan 83 ni ayirish.
x=\frac{37}{20}
\frac{74}{40} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=6 x=\frac{37}{20}
Tenglama yechildi.
20x^{2}-157x+222=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
20x^{2}-157x+222-222=-222
Tenglamaning ikkala tarafidan 222 ni ayirish.
20x^{2}-157x=-222
O‘zidan 222 ayirilsa 0 qoladi.
\frac{20x^{2}-157x}{20}=-\frac{222}{20}
Ikki tarafini 20 ga bo‘ling.
x^{2}-\frac{157}{20}x=-\frac{222}{20}
20 ga bo'lish 20 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{157}{20}x=-\frac{111}{10}
\frac{-222}{20} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{157}{20}x+\left(-\frac{157}{40}\right)^{2}=-\frac{111}{10}+\left(-\frac{157}{40}\right)^{2}
-\frac{157}{20} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{157}{40} olish uchun. Keyin, -\frac{157}{40} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{157}{20}x+\frac{24649}{1600}=-\frac{111}{10}+\frac{24649}{1600}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{157}{40} kvadratini chiqarish.
x^{2}-\frac{157}{20}x+\frac{24649}{1600}=\frac{6889}{1600}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{111}{10} ni \frac{24649}{1600} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{157}{40}\right)^{2}=\frac{6889}{1600}
x^{2}-\frac{157}{20}x+\frac{24649}{1600} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{157}{40}\right)^{2}}=\sqrt{\frac{6889}{1600}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{157}{40}=\frac{83}{40} x-\frac{157}{40}=-\frac{83}{40}
Qisqartirish.
x=6 x=\frac{37}{20}
\frac{157}{40} ni tenglamaning ikkala tarafiga qo'shish.