Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

a+b=-7 ab=20\left(-3\right)=-60
Ifodani guruhlash orqali faktorlang. Avvalo, ifoda 20n^{2}+an+bn-3 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -60-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
Har bir juftlik yigʻindisini hisoblang.
a=-12 b=5
Yechim – -7 yigʻindisini beruvchi juftlik.
\left(20n^{2}-12n\right)+\left(5n-3\right)
20n^{2}-7n-3 ni \left(20n^{2}-12n\right)+\left(5n-3\right) sifatida qaytadan yozish.
4n\left(5n-3\right)+5n-3
20n^{2}-12n ichida 4n ni ajrating.
\left(5n-3\right)\left(4n+1\right)
Distributiv funktsiyasidan foydalangan holda 5n-3 umumiy terminini chiqaring.
20n^{2}-7n-3=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
n=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 20\left(-3\right)}}{2\times 20}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
n=\frac{-\left(-7\right)±\sqrt{49-4\times 20\left(-3\right)}}{2\times 20}
-7 kvadratini chiqarish.
n=\frac{-\left(-7\right)±\sqrt{49-80\left(-3\right)}}{2\times 20}
-4 ni 20 marotabaga ko'paytirish.
n=\frac{-\left(-7\right)±\sqrt{49+240}}{2\times 20}
-80 ni -3 marotabaga ko'paytirish.
n=\frac{-\left(-7\right)±\sqrt{289}}{2\times 20}
49 ni 240 ga qo'shish.
n=\frac{-\left(-7\right)±17}{2\times 20}
289 ning kvadrat ildizini chiqarish.
n=\frac{7±17}{2\times 20}
-7 ning teskarisi 7 ga teng.
n=\frac{7±17}{40}
2 ni 20 marotabaga ko'paytirish.
n=\frac{24}{40}
n=\frac{7±17}{40} tenglamasini yeching, bunda ± musbat. 7 ni 17 ga qo'shish.
n=\frac{3}{5}
\frac{24}{40} ulushini 8 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
n=-\frac{10}{40}
n=\frac{7±17}{40} tenglamasini yeching, bunda ± manfiy. 7 dan 17 ni ayirish.
n=-\frac{1}{4}
\frac{-10}{40} ulushini 10 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
20n^{2}-7n-3=20\left(n-\frac{3}{5}\right)\left(n-\left(-\frac{1}{4}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{3}{5} ga va x_{2} uchun -\frac{1}{4} ga bo‘ling.
20n^{2}-7n-3=20\left(n-\frac{3}{5}\right)\left(n+\frac{1}{4}\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.
20n^{2}-7n-3=20\times \frac{5n-3}{5}\left(n+\frac{1}{4}\right)
Umumiy maxrajni topib va suratlarni ayirib \frac{3}{5} ni n dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
20n^{2}-7n-3=20\times \frac{5n-3}{5}\times \frac{4n+1}{4}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{4} ni n ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
20n^{2}-7n-3=20\times \frac{\left(5n-3\right)\left(4n+1\right)}{5\times 4}
Raqamlash sonlarini va maxraj sonlariga ko'paytirish orqali \frac{5n-3}{5} ni \frac{4n+1}{4} ga ko'paytirish. So'ngra kasrni imkoni boricha eng kam a'zoga qisqartiring.
20n^{2}-7n-3=20\times \frac{\left(5n-3\right)\left(4n+1\right)}{20}
5 ni 4 marotabaga ko'paytirish.
20n^{2}-7n-3=\left(5n-3\right)\left(4n+1\right)
20 va 20 ichida eng katta umumiy 20 faktorini bekor qiling.