Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(x-2\right)\left(60-x-2\right)-16=\frac{14240}{20}
Ikki tarafini 20 ga bo‘ling.
\left(x-2\right)\left(60-x-2\right)-16=712
712 ni olish uchun 14240 ni 20 ga bo‘ling.
\left(x-2\right)\left(58-x\right)-16=712
58 olish uchun 60 dan 2 ni ayirish.
60x-x^{2}-116-16=712
x-2 ga 58-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
60x-x^{2}-132=712
-132 olish uchun -116 dan 16 ni ayirish.
60x-x^{2}-132-712=0
Ikkala tarafdan 712 ni ayirish.
60x-x^{2}-844=0
-844 olish uchun -132 dan 712 ni ayirish.
-x^{2}+60x-844=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-60±\sqrt{60^{2}-4\left(-1\right)\left(-844\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 60 ni b va -844 ni c bilan almashtiring.
x=\frac{-60±\sqrt{3600-4\left(-1\right)\left(-844\right)}}{2\left(-1\right)}
60 kvadratini chiqarish.
x=\frac{-60±\sqrt{3600+4\left(-844\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-60±\sqrt{3600-3376}}{2\left(-1\right)}
4 ni -844 marotabaga ko'paytirish.
x=\frac{-60±\sqrt{224}}{2\left(-1\right)}
3600 ni -3376 ga qo'shish.
x=\frac{-60±4\sqrt{14}}{2\left(-1\right)}
224 ning kvadrat ildizini chiqarish.
x=\frac{-60±4\sqrt{14}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{4\sqrt{14}-60}{-2}
x=\frac{-60±4\sqrt{14}}{-2} tenglamasini yeching, bunda ± musbat. -60 ni 4\sqrt{14} ga qo'shish.
x=30-2\sqrt{14}
-60+4\sqrt{14} ni -2 ga bo'lish.
x=\frac{-4\sqrt{14}-60}{-2}
x=\frac{-60±4\sqrt{14}}{-2} tenglamasini yeching, bunda ± manfiy. -60 dan 4\sqrt{14} ni ayirish.
x=2\sqrt{14}+30
-60-4\sqrt{14} ni -2 ga bo'lish.
x=30-2\sqrt{14} x=2\sqrt{14}+30
Tenglama yechildi.
\left(x-2\right)\left(60-x-2\right)-16=\frac{14240}{20}
Ikki tarafini 20 ga bo‘ling.
\left(x-2\right)\left(60-x-2\right)-16=712
712 ni olish uchun 14240 ni 20 ga bo‘ling.
\left(x-2\right)\left(58-x\right)-16=712
58 olish uchun 60 dan 2 ni ayirish.
60x-x^{2}-116-16=712
x-2 ga 58-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
60x-x^{2}-132=712
-132 olish uchun -116 dan 16 ni ayirish.
60x-x^{2}=712+132
132 ni ikki tarafga qo’shing.
60x-x^{2}=844
844 olish uchun 712 va 132'ni qo'shing.
-x^{2}+60x=844
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}+60x}{-1}=\frac{844}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{60}{-1}x=\frac{844}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-60x=\frac{844}{-1}
60 ni -1 ga bo'lish.
x^{2}-60x=-844
844 ni -1 ga bo'lish.
x^{2}-60x+\left(-30\right)^{2}=-844+\left(-30\right)^{2}
-60 ni bo‘lish, x shartining koeffitsienti, 2 ga -30 olish uchun. Keyin, -30 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-60x+900=-844+900
-30 kvadratini chiqarish.
x^{2}-60x+900=56
-844 ni 900 ga qo'shish.
\left(x-30\right)^{2}=56
x^{2}-60x+900 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-30\right)^{2}}=\sqrt{56}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-30=2\sqrt{14} x-30=-2\sqrt{14}
Qisqartirish.
x=2\sqrt{14}+30 x=30-2\sqrt{14}
30 ni tenglamaning ikkala tarafiga qo'shish.