x uchun yechish
x = -\frac{22}{3} = -7\frac{1}{3} \approx -7,333333333
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{20}{9}=-\frac{1}{3}\left(x+\frac{2}{3}\right)
\frac{-1}{3} kasri manfiy belgini olib tashlash bilan -\frac{1}{3} sifatida qayta yozilishi mumkin.
\frac{20}{9}=-\frac{1}{3}x-\frac{1}{3}\times \frac{2}{3}
-\frac{1}{3} ga x+\frac{2}{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{20}{9}=-\frac{1}{3}x+\frac{-2}{3\times 3}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali -\frac{1}{3} ni \frac{2}{3} ga ko‘paytiring.
\frac{20}{9}=-\frac{1}{3}x+\frac{-2}{9}
\frac{-2}{3\times 3} kasridagi ko‘paytirishlarni bajaring.
\frac{20}{9}=-\frac{1}{3}x-\frac{2}{9}
\frac{-2}{9} kasri manfiy belgini olib tashlash bilan -\frac{2}{9} sifatida qayta yozilishi mumkin.
-\frac{1}{3}x-\frac{2}{9}=\frac{20}{9}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-\frac{1}{3}x=\frac{20}{9}+\frac{2}{9}
\frac{2}{9} ni ikki tarafga qo’shing.
-\frac{1}{3}x=\frac{20+2}{9}
\frac{20}{9} va \frac{2}{9} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
-\frac{1}{3}x=\frac{22}{9}
22 olish uchun 20 va 2'ni qo'shing.
x=\frac{22}{9}\left(-3\right)
Ikki tarafini -3 va teskari kasri -\frac{1}{3} ga ko‘paytiring.
x=\frac{22\left(-3\right)}{9}
\frac{22}{9}\left(-3\right) ni yagona kasrga aylantiring.
x=\frac{-66}{9}
-66 hosil qilish uchun 22 va -3 ni ko'paytirish.
x=-\frac{22}{3}
\frac{-66}{9} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}