t uchun yechish
t = \frac{3 \sqrt{610} + 10}{49} \approx 1,716214984
t=\frac{10-3\sqrt{610}}{49}\approx -1,308051719
Baham ko'rish
Klipbordga nusxa olish
-49t^{2}+20t+130=20
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-49t^{2}+20t+130-20=0
Ikkala tarafdan 20 ni ayirish.
-49t^{2}+20t+110=0
110 olish uchun 130 dan 20 ni ayirish.
t=\frac{-20±\sqrt{20^{2}-4\left(-49\right)\times 110}}{2\left(-49\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -49 ni a, 20 ni b va 110 ni c bilan almashtiring.
t=\frac{-20±\sqrt{400-4\left(-49\right)\times 110}}{2\left(-49\right)}
20 kvadratini chiqarish.
t=\frac{-20±\sqrt{400+196\times 110}}{2\left(-49\right)}
-4 ni -49 marotabaga ko'paytirish.
t=\frac{-20±\sqrt{400+21560}}{2\left(-49\right)}
196 ni 110 marotabaga ko'paytirish.
t=\frac{-20±\sqrt{21960}}{2\left(-49\right)}
400 ni 21560 ga qo'shish.
t=\frac{-20±6\sqrt{610}}{2\left(-49\right)}
21960 ning kvadrat ildizini chiqarish.
t=\frac{-20±6\sqrt{610}}{-98}
2 ni -49 marotabaga ko'paytirish.
t=\frac{6\sqrt{610}-20}{-98}
t=\frac{-20±6\sqrt{610}}{-98} tenglamasini yeching, bunda ± musbat. -20 ni 6\sqrt{610} ga qo'shish.
t=\frac{10-3\sqrt{610}}{49}
-20+6\sqrt{610} ni -98 ga bo'lish.
t=\frac{-6\sqrt{610}-20}{-98}
t=\frac{-20±6\sqrt{610}}{-98} tenglamasini yeching, bunda ± manfiy. -20 dan 6\sqrt{610} ni ayirish.
t=\frac{3\sqrt{610}+10}{49}
-20-6\sqrt{610} ni -98 ga bo'lish.
t=\frac{10-3\sqrt{610}}{49} t=\frac{3\sqrt{610}+10}{49}
Tenglama yechildi.
-49t^{2}+20t+130=20
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-49t^{2}+20t=20-130
Ikkala tarafdan 130 ni ayirish.
-49t^{2}+20t=-110
-110 olish uchun 20 dan 130 ni ayirish.
\frac{-49t^{2}+20t}{-49}=-\frac{110}{-49}
Ikki tarafini -49 ga bo‘ling.
t^{2}+\frac{20}{-49}t=-\frac{110}{-49}
-49 ga bo'lish -49 ga ko'paytirishni bekor qiladi.
t^{2}-\frac{20}{49}t=-\frac{110}{-49}
20 ni -49 ga bo'lish.
t^{2}-\frac{20}{49}t=\frac{110}{49}
-110 ni -49 ga bo'lish.
t^{2}-\frac{20}{49}t+\left(-\frac{10}{49}\right)^{2}=\frac{110}{49}+\left(-\frac{10}{49}\right)^{2}
-\frac{20}{49} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{10}{49} olish uchun. Keyin, -\frac{10}{49} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
t^{2}-\frac{20}{49}t+\frac{100}{2401}=\frac{110}{49}+\frac{100}{2401}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{10}{49} kvadratini chiqarish.
t^{2}-\frac{20}{49}t+\frac{100}{2401}=\frac{5490}{2401}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{110}{49} ni \frac{100}{2401} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(t-\frac{10}{49}\right)^{2}=\frac{5490}{2401}
t^{2}-\frac{20}{49}t+\frac{100}{2401} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(t-\frac{10}{49}\right)^{2}}=\sqrt{\frac{5490}{2401}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
t-\frac{10}{49}=\frac{3\sqrt{610}}{49} t-\frac{10}{49}=-\frac{3\sqrt{610}}{49}
Qisqartirish.
t=\frac{3\sqrt{610}+10}{49} t=\frac{10-3\sqrt{610}}{49}
\frac{10}{49} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}