Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

225x^{2}-90x+324=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-90\right)±\sqrt{\left(-90\right)^{2}-4\times 225\times 324}}{2\times 225}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 225 ni a, -90 ni b va 324 ni c bilan almashtiring.
x=\frac{-\left(-90\right)±\sqrt{8100-4\times 225\times 324}}{2\times 225}
-90 kvadratini chiqarish.
x=\frac{-\left(-90\right)±\sqrt{8100-900\times 324}}{2\times 225}
-4 ni 225 marotabaga ko'paytirish.
x=\frac{-\left(-90\right)±\sqrt{8100-291600}}{2\times 225}
-900 ni 324 marotabaga ko'paytirish.
x=\frac{-\left(-90\right)±\sqrt{-283500}}{2\times 225}
8100 ni -291600 ga qo'shish.
x=\frac{-\left(-90\right)±90\sqrt{35}i}{2\times 225}
-283500 ning kvadrat ildizini chiqarish.
x=\frac{90±90\sqrt{35}i}{2\times 225}
-90 ning teskarisi 90 ga teng.
x=\frac{90±90\sqrt{35}i}{450}
2 ni 225 marotabaga ko'paytirish.
x=\frac{90+90\sqrt{35}i}{450}
x=\frac{90±90\sqrt{35}i}{450} tenglamasini yeching, bunda ± musbat. 90 ni 90i\sqrt{35} ga qo'shish.
x=\frac{1+\sqrt{35}i}{5}
90+90i\sqrt{35} ni 450 ga bo'lish.
x=\frac{-90\sqrt{35}i+90}{450}
x=\frac{90±90\sqrt{35}i}{450} tenglamasini yeching, bunda ± manfiy. 90 dan 90i\sqrt{35} ni ayirish.
x=\frac{-\sqrt{35}i+1}{5}
90-90i\sqrt{35} ni 450 ga bo'lish.
x=\frac{1+\sqrt{35}i}{5} x=\frac{-\sqrt{35}i+1}{5}
Tenglama yechildi.
225x^{2}-90x+324=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
225x^{2}-90x+324-324=-324
Tenglamaning ikkala tarafidan 324 ni ayirish.
225x^{2}-90x=-324
O‘zidan 324 ayirilsa 0 qoladi.
\frac{225x^{2}-90x}{225}=-\frac{324}{225}
Ikki tarafini 225 ga bo‘ling.
x^{2}+\left(-\frac{90}{225}\right)x=-\frac{324}{225}
225 ga bo'lish 225 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{2}{5}x=-\frac{324}{225}
\frac{-90}{225} ulushini 45 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{2}{5}x=-\frac{36}{25}
\frac{-324}{225} ulushini 9 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{2}{5}x+\left(-\frac{1}{5}\right)^{2}=-\frac{36}{25}+\left(-\frac{1}{5}\right)^{2}
-\frac{2}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{5} olish uchun. Keyin, -\frac{1}{5} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{2}{5}x+\frac{1}{25}=\frac{-36+1}{25}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{5} kvadratini chiqarish.
x^{2}-\frac{2}{5}x+\frac{1}{25}=-\frac{7}{5}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{36}{25} ni \frac{1}{25} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{5}\right)^{2}=-\frac{7}{5}
x^{2}-\frac{2}{5}x+\frac{1}{25} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{5}\right)^{2}}=\sqrt{-\frac{7}{5}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{5}=\frac{\sqrt{35}i}{5} x-\frac{1}{5}=-\frac{\sqrt{35}i}{5}
Qisqartirish.
x=\frac{1+\sqrt{35}i}{5} x=\frac{-\sqrt{35}i+1}{5}
\frac{1}{5} ni tenglamaning ikkala tarafiga qo'shish.