Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

1-3x^{2}=0
Ikki tarafini 2 ga bo‘ling. Nol bo‘lmagan har qanday sonni nolga ko‘paytirsangiz, nol bo‘ladi.
-3x^{2}=-1
Ikkala tarafdan 1 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}=\frac{-1}{-3}
Ikki tarafini -3 ga bo‘ling.
x^{2}=\frac{1}{3}
Ikkala surat va maxrajdan manfiy belgini olib tashlash bilan \frac{-1}{-3} kasrini \frac{1}{3} ga soddalashtirish mumkin.
x=\frac{\sqrt{3}}{3} x=-\frac{\sqrt{3}}{3}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
1-3x^{2}=0
Ikki tarafini 2 ga bo‘ling. Nol bo‘lmagan har qanday sonni nolga ko‘paytirsangiz, nol bo‘ladi.
-3x^{2}+1=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-3\right)}}{2\left(-3\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -3 ni a, 0 ni b va 1 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-3\right)}}{2\left(-3\right)}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{12}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{0±2\sqrt{3}}{2\left(-3\right)}
12 ning kvadrat ildizini chiqarish.
x=\frac{0±2\sqrt{3}}{-6}
2 ni -3 marotabaga ko'paytirish.
x=-\frac{\sqrt{3}}{3}
x=\frac{0±2\sqrt{3}}{-6} tenglamasini yeching, bunda ± musbat.
x=\frac{\sqrt{3}}{3}
x=\frac{0±2\sqrt{3}}{-6} tenglamasini yeching, bunda ± manfiy.
x=-\frac{\sqrt{3}}{3} x=\frac{\sqrt{3}}{3}
Tenglama yechildi.