x uchun yechish
x = \frac{3}{2} = 1\frac{1}{2} = 1,5
x = -\frac{3}{2} = -1\frac{1}{2} = -1,5
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{2}{4}=x^{2}-\frac{7}{4}
Ikki tarafini 4 ga bo‘ling.
\frac{1}{2}=x^{2}-\frac{7}{4}
\frac{2}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{7}{4}=\frac{1}{2}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x^{2}-\frac{7}{4}-\frac{1}{2}=0
Ikkala tarafdan \frac{1}{2} ni ayirish.
x^{2}-\frac{9}{4}=0
-\frac{9}{4} olish uchun -\frac{7}{4} dan \frac{1}{2} ni ayirish.
4x^{2}-9=0
Ikkala tarafini 4 ga ko‘paytiring.
\left(2x-3\right)\left(2x+3\right)=0
Hisoblang: 4x^{2}-9. 4x^{2}-9 ni \left(2x\right)^{2}-3^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{3}{2} x=-\frac{3}{2}
Tenglamani yechish uchun 2x-3=0 va 2x+3=0 ni yeching.
\frac{2}{4}=x^{2}-\frac{7}{4}
Ikki tarafini 4 ga bo‘ling.
\frac{1}{2}=x^{2}-\frac{7}{4}
\frac{2}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{7}{4}=\frac{1}{2}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x^{2}=\frac{1}{2}+\frac{7}{4}
\frac{7}{4} ni ikki tarafga qo’shing.
x^{2}=\frac{9}{4}
\frac{9}{4} olish uchun \frac{1}{2} va \frac{7}{4}'ni qo'shing.
x=\frac{3}{2} x=-\frac{3}{2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
\frac{2}{4}=x^{2}-\frac{7}{4}
Ikki tarafini 4 ga bo‘ling.
\frac{1}{2}=x^{2}-\frac{7}{4}
\frac{2}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{7}{4}=\frac{1}{2}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x^{2}-\frac{7}{4}-\frac{1}{2}=0
Ikkala tarafdan \frac{1}{2} ni ayirish.
x^{2}-\frac{9}{4}=0
-\frac{9}{4} olish uchun -\frac{7}{4} dan \frac{1}{2} ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{9}{4}\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -\frac{9}{4} ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-\frac{9}{4}\right)}}{2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{9}}{2}
-4 ni -\frac{9}{4} marotabaga ko'paytirish.
x=\frac{0±3}{2}
9 ning kvadrat ildizini chiqarish.
x=\frac{3}{2}
x=\frac{0±3}{2} tenglamasini yeching, bunda ± musbat. 3 ni 2 ga bo'lish.
x=-\frac{3}{2}
x=\frac{0±3}{2} tenglamasini yeching, bunda ± manfiy. -3 ni 2 ga bo'lish.
x=\frac{3}{2} x=-\frac{3}{2}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}