Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3=\left(2x+3\right)\left(5x-3\right)
3 olish uchun 2 va 1'ni qo'shing.
3=10x^{2}+9x-9
2x+3 ga 5x-3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
10x^{2}+9x-9=3
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
10x^{2}+9x-9-3=0
Ikkala tarafdan 3 ni ayirish.
10x^{2}+9x-12=0
-12 olish uchun -9 dan 3 ni ayirish.
x=\frac{-9±\sqrt{9^{2}-4\times 10\left(-12\right)}}{2\times 10}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 10 ni a, 9 ni b va -12 ni c bilan almashtiring.
x=\frac{-9±\sqrt{81-4\times 10\left(-12\right)}}{2\times 10}
9 kvadratini chiqarish.
x=\frac{-9±\sqrt{81-40\left(-12\right)}}{2\times 10}
-4 ni 10 marotabaga ko'paytirish.
x=\frac{-9±\sqrt{81+480}}{2\times 10}
-40 ni -12 marotabaga ko'paytirish.
x=\frac{-9±\sqrt{561}}{2\times 10}
81 ni 480 ga qo'shish.
x=\frac{-9±\sqrt{561}}{20}
2 ni 10 marotabaga ko'paytirish.
x=\frac{\sqrt{561}-9}{20}
x=\frac{-9±\sqrt{561}}{20} tenglamasini yeching, bunda ± musbat. -9 ni \sqrt{561} ga qo'shish.
x=\frac{-\sqrt{561}-9}{20}
x=\frac{-9±\sqrt{561}}{20} tenglamasini yeching, bunda ± manfiy. -9 dan \sqrt{561} ni ayirish.
x=\frac{\sqrt{561}-9}{20} x=\frac{-\sqrt{561}-9}{20}
Tenglama yechildi.
3=\left(2x+3\right)\left(5x-3\right)
3 olish uchun 2 va 1'ni qo'shing.
3=10x^{2}+9x-9
2x+3 ga 5x-3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
10x^{2}+9x-9=3
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
10x^{2}+9x=3+9
9 ni ikki tarafga qo’shing.
10x^{2}+9x=12
12 olish uchun 3 va 9'ni qo'shing.
\frac{10x^{2}+9x}{10}=\frac{12}{10}
Ikki tarafini 10 ga bo‘ling.
x^{2}+\frac{9}{10}x=\frac{12}{10}
10 ga bo'lish 10 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{9}{10}x=\frac{6}{5}
\frac{12}{10} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{9}{10}x+\left(\frac{9}{20}\right)^{2}=\frac{6}{5}+\left(\frac{9}{20}\right)^{2}
\frac{9}{10} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{9}{20} olish uchun. Keyin, \frac{9}{20} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{9}{10}x+\frac{81}{400}=\frac{6}{5}+\frac{81}{400}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{9}{20} kvadratini chiqarish.
x^{2}+\frac{9}{10}x+\frac{81}{400}=\frac{561}{400}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{6}{5} ni \frac{81}{400} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{9}{20}\right)^{2}=\frac{561}{400}
x^{2}+\frac{9}{10}x+\frac{81}{400} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{9}{20}\right)^{2}}=\sqrt{\frac{561}{400}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{9}{20}=\frac{\sqrt{561}}{20} x+\frac{9}{20}=-\frac{\sqrt{561}}{20}
Qisqartirish.
x=\frac{\sqrt{561}-9}{20} x=\frac{-\sqrt{561}-9}{20}
Tenglamaning ikkala tarafidan \frac{9}{20} ni ayirish.