Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
y_1 uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2y_{1}x-\frac{2}{3}y_{1}-\sqrt{2}=0
2y_{1} ga x-\frac{1}{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2y_{1}x-\sqrt{2}=\frac{2}{3}y_{1}
\frac{2}{3}y_{1} ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
2y_{1}x=\frac{2}{3}y_{1}+\sqrt{2}
\sqrt{2} ni ikki tarafga qo’shing.
2y_{1}x=\frac{2y_{1}}{3}+\sqrt{2}
Tenglama standart shaklda.
\frac{2y_{1}x}{2y_{1}}=\frac{\frac{2y_{1}}{3}+\sqrt{2}}{2y_{1}}
Ikki tarafini 2y_{1} ga bo‘ling.
x=\frac{\frac{2y_{1}}{3}+\sqrt{2}}{2y_{1}}
2y_{1} ga bo'lish 2y_{1} ga ko'paytirishni bekor qiladi.
x=\frac{1}{3}+\frac{\sqrt{2}}{2y_{1}}
\frac{2y_{1}}{3}+\sqrt{2} ni 2y_{1} ga bo'lish.
2y_{1}x-\frac{2}{3}y_{1}-\sqrt{2}=0
2y_{1} ga x-\frac{1}{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2y_{1}x-\frac{2}{3}y_{1}=\sqrt{2}
\sqrt{2} ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\left(2x-\frac{2}{3}\right)y_{1}=\sqrt{2}
y_{1}'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{\left(2x-\frac{2}{3}\right)y_{1}}{2x-\frac{2}{3}}=\frac{\sqrt{2}}{2x-\frac{2}{3}}
Ikki tarafini 2x-\frac{2}{3} ga bo‘ling.
y_{1}=\frac{\sqrt{2}}{2x-\frac{2}{3}}
2x-\frac{2}{3} ga bo'lish 2x-\frac{2}{3} ga ko'paytirishni bekor qiladi.
y_{1}=\frac{3\sqrt{2}}{2\left(3x-1\right)}
\sqrt{2} ni 2x-\frac{2}{3} ga bo'lish.