x uchun yechish
x=\frac{1}{3}+\frac{\sqrt{2}}{2y_{1}}
y_{1}\neq 0
y_1 uchun yechish
y_{1}=\frac{3\sqrt{2}}{2\left(3x-1\right)}
x\neq \frac{1}{3}
Grafik
Baham ko'rish
Klipbordga nusxa olish
2y_{1}x-\frac{2}{3}y_{1}-\sqrt{2}=0
2y_{1} ga x-\frac{1}{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2y_{1}x-\sqrt{2}=\frac{2}{3}y_{1}
\frac{2}{3}y_{1} ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
2y_{1}x=\frac{2}{3}y_{1}+\sqrt{2}
\sqrt{2} ni ikki tarafga qo’shing.
2y_{1}x=\frac{2y_{1}}{3}+\sqrt{2}
Tenglama standart shaklda.
\frac{2y_{1}x}{2y_{1}}=\frac{\frac{2y_{1}}{3}+\sqrt{2}}{2y_{1}}
Ikki tarafini 2y_{1} ga bo‘ling.
x=\frac{\frac{2y_{1}}{3}+\sqrt{2}}{2y_{1}}
2y_{1} ga bo'lish 2y_{1} ga ko'paytirishni bekor qiladi.
x=\frac{1}{3}+\frac{\sqrt{2}}{2y_{1}}
\frac{2y_{1}}{3}+\sqrt{2} ni 2y_{1} ga bo'lish.
2y_{1}x-\frac{2}{3}y_{1}-\sqrt{2}=0
2y_{1} ga x-\frac{1}{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2y_{1}x-\frac{2}{3}y_{1}=\sqrt{2}
\sqrt{2} ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\left(2x-\frac{2}{3}\right)y_{1}=\sqrt{2}
y_{1}'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{\left(2x-\frac{2}{3}\right)y_{1}}{2x-\frac{2}{3}}=\frac{\sqrt{2}}{2x-\frac{2}{3}}
Ikki tarafini 2x-\frac{2}{3} ga bo‘ling.
y_{1}=\frac{\sqrt{2}}{2x-\frac{2}{3}}
2x-\frac{2}{3} ga bo'lish 2x-\frac{2}{3} ga ko'paytirishni bekor qiladi.
y_{1}=\frac{3\sqrt{2}}{2\left(3x-1\right)}
\sqrt{2} ni 2x-\frac{2}{3} ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}