y uchun yechish
y=\frac{1+\sqrt{15}i}{4}\approx 0,25+0,968245837i
y=\frac{-\sqrt{15}i+1}{4}\approx 0,25-0,968245837i
Baham ko'rish
Klipbordga nusxa olish
2y^{2}-y+2=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
y=\frac{-\left(-1\right)±\sqrt{1-4\times 2\times 2}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -1 ni b va 2 ni c bilan almashtiring.
y=\frac{-\left(-1\right)±\sqrt{1-8\times 2}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
y=\frac{-\left(-1\right)±\sqrt{1-16}}{2\times 2}
-8 ni 2 marotabaga ko'paytirish.
y=\frac{-\left(-1\right)±\sqrt{-15}}{2\times 2}
1 ni -16 ga qo'shish.
y=\frac{-\left(-1\right)±\sqrt{15}i}{2\times 2}
-15 ning kvadrat ildizini chiqarish.
y=\frac{1±\sqrt{15}i}{2\times 2}
-1 ning teskarisi 1 ga teng.
y=\frac{1±\sqrt{15}i}{4}
2 ni 2 marotabaga ko'paytirish.
y=\frac{1+\sqrt{15}i}{4}
y=\frac{1±\sqrt{15}i}{4} tenglamasini yeching, bunda ± musbat. 1 ni i\sqrt{15} ga qo'shish.
y=\frac{-\sqrt{15}i+1}{4}
y=\frac{1±\sqrt{15}i}{4} tenglamasini yeching, bunda ± manfiy. 1 dan i\sqrt{15} ni ayirish.
y=\frac{1+\sqrt{15}i}{4} y=\frac{-\sqrt{15}i+1}{4}
Tenglama yechildi.
2y^{2}-y+2=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2y^{2}-y+2-2=-2
Tenglamaning ikkala tarafidan 2 ni ayirish.
2y^{2}-y=-2
O‘zidan 2 ayirilsa 0 qoladi.
\frac{2y^{2}-y}{2}=-\frac{2}{2}
Ikki tarafini 2 ga bo‘ling.
y^{2}-\frac{1}{2}y=-\frac{2}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
y^{2}-\frac{1}{2}y=-1
-2 ni 2 ga bo'lish.
y^{2}-\frac{1}{2}y+\left(-\frac{1}{4}\right)^{2}=-1+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{4} olish uchun. Keyin, -\frac{1}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}-\frac{1}{2}y+\frac{1}{16}=-1+\frac{1}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{4} kvadratini chiqarish.
y^{2}-\frac{1}{2}y+\frac{1}{16}=-\frac{15}{16}
-1 ni \frac{1}{16} ga qo'shish.
\left(y-\frac{1}{4}\right)^{2}=-\frac{15}{16}
y^{2}-\frac{1}{2}y+\frac{1}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{15}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y-\frac{1}{4}=\frac{\sqrt{15}i}{4} y-\frac{1}{4}=-\frac{\sqrt{15}i}{4}
Qisqartirish.
y=\frac{1+\sqrt{15}i}{4} y=\frac{-\sqrt{15}i+1}{4}
\frac{1}{4} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}