Asosiy tarkibga oʻtish
y uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2y^{2}+y=1
y ni olish uchun -4y va 5y ni birlashtirish.
2y^{2}+y-1=0
Ikkala tarafdan 1 ni ayirish.
a+b=1 ab=2\left(-1\right)=-2
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon 2y^{2}+ay+by-1 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
a=-1 b=2
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b musbat boʻlganda, musbat sonda manfiyga nisbatdan kattaroq mutlaq qiymat bor. Faqat bundan juftlik tizim yechimidir.
\left(2y^{2}-y\right)+\left(2y-1\right)
2y^{2}+y-1 ni \left(2y^{2}-y\right)+\left(2y-1\right) sifatida qaytadan yozish.
y\left(2y-1\right)+2y-1
2y^{2}-y ichida y ni ajrating.
\left(2y-1\right)\left(y+1\right)
Distributiv funktsiyasidan foydalangan holda 2y-1 umumiy terminini chiqaring.
y=\frac{1}{2} y=-1
Tenglamani yechish uchun 2y-1=0 va y+1=0 ni yeching.
2y^{2}+y=1
y ni olish uchun -4y va 5y ni birlashtirish.
2y^{2}+y-1=0
Ikkala tarafdan 1 ni ayirish.
y=\frac{-1±\sqrt{1^{2}-4\times 2\left(-1\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 1 ni b va -1 ni c bilan almashtiring.
y=\frac{-1±\sqrt{1-4\times 2\left(-1\right)}}{2\times 2}
1 kvadratini chiqarish.
y=\frac{-1±\sqrt{1-8\left(-1\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
y=\frac{-1±\sqrt{1+8}}{2\times 2}
-8 ni -1 marotabaga ko'paytirish.
y=\frac{-1±\sqrt{9}}{2\times 2}
1 ni 8 ga qo'shish.
y=\frac{-1±3}{2\times 2}
9 ning kvadrat ildizini chiqarish.
y=\frac{-1±3}{4}
2 ni 2 marotabaga ko'paytirish.
y=\frac{2}{4}
y=\frac{-1±3}{4} tenglamasini yeching, bunda ± musbat. -1 ni 3 ga qo'shish.
y=\frac{1}{2}
\frac{2}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
y=-\frac{4}{4}
y=\frac{-1±3}{4} tenglamasini yeching, bunda ± manfiy. -1 dan 3 ni ayirish.
y=-1
-4 ni 4 ga bo'lish.
y=\frac{1}{2} y=-1
Tenglama yechildi.
2y^{2}+y=1
y ni olish uchun -4y va 5y ni birlashtirish.
\frac{2y^{2}+y}{2}=\frac{1}{2}
Ikki tarafini 2 ga bo‘ling.
y^{2}+\frac{1}{2}y=\frac{1}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
y^{2}+\frac{1}{2}y+\left(\frac{1}{4}\right)^{2}=\frac{1}{2}+\left(\frac{1}{4}\right)^{2}
\frac{1}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{4} olish uchun. Keyin, \frac{1}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}+\frac{1}{2}y+\frac{1}{16}=\frac{1}{2}+\frac{1}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{4} kvadratini chiqarish.
y^{2}+\frac{1}{2}y+\frac{1}{16}=\frac{9}{16}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{2} ni \frac{1}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(y+\frac{1}{4}\right)^{2}=\frac{9}{16}
y^{2}+\frac{1}{2}y+\frac{1}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y+\frac{1}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y+\frac{1}{4}=\frac{3}{4} y+\frac{1}{4}=-\frac{3}{4}
Qisqartirish.
y=\frac{1}{2} y=-1
Tenglamaning ikkala tarafidan \frac{1}{4} ni ayirish.