Asosiy tarkibga oʻtish
y uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2y^{2}+y-5=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
y=\frac{-1±\sqrt{1^{2}-4\times 2\left(-5\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 1 ni b va -5 ni c bilan almashtiring.
y=\frac{-1±\sqrt{1-4\times 2\left(-5\right)}}{2\times 2}
1 kvadratini chiqarish.
y=\frac{-1±\sqrt{1-8\left(-5\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
y=\frac{-1±\sqrt{1+40}}{2\times 2}
-8 ni -5 marotabaga ko'paytirish.
y=\frac{-1±\sqrt{41}}{2\times 2}
1 ni 40 ga qo'shish.
y=\frac{-1±\sqrt{41}}{4}
2 ni 2 marotabaga ko'paytirish.
y=\frac{\sqrt{41}-1}{4}
y=\frac{-1±\sqrt{41}}{4} tenglamasini yeching, bunda ± musbat. -1 ni \sqrt{41} ga qo'shish.
y=\frac{-\sqrt{41}-1}{4}
y=\frac{-1±\sqrt{41}}{4} tenglamasini yeching, bunda ± manfiy. -1 dan \sqrt{41} ni ayirish.
y=\frac{\sqrt{41}-1}{4} y=\frac{-\sqrt{41}-1}{4}
Tenglama yechildi.
2y^{2}+y-5=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2y^{2}+y-5-\left(-5\right)=-\left(-5\right)
5 ni tenglamaning ikkala tarafiga qo'shish.
2y^{2}+y=-\left(-5\right)
O‘zidan -5 ayirilsa 0 qoladi.
2y^{2}+y=5
0 dan -5 ni ayirish.
\frac{2y^{2}+y}{2}=\frac{5}{2}
Ikki tarafini 2 ga bo‘ling.
y^{2}+\frac{1}{2}y=\frac{5}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
y^{2}+\frac{1}{2}y+\left(\frac{1}{4}\right)^{2}=\frac{5}{2}+\left(\frac{1}{4}\right)^{2}
\frac{1}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{4} olish uchun. Keyin, \frac{1}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}+\frac{1}{2}y+\frac{1}{16}=\frac{5}{2}+\frac{1}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{4} kvadratini chiqarish.
y^{2}+\frac{1}{2}y+\frac{1}{16}=\frac{41}{16}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{5}{2} ni \frac{1}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(y+\frac{1}{4}\right)^{2}=\frac{41}{16}
y^{2}+\frac{1}{2}y+\frac{1}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y+\frac{1}{4}\right)^{2}}=\sqrt{\frac{41}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y+\frac{1}{4}=\frac{\sqrt{41}}{4} y+\frac{1}{4}=-\frac{\sqrt{41}}{4}
Qisqartirish.
y=\frac{\sqrt{41}-1}{4} y=\frac{-\sqrt{41}-1}{4}
Tenglamaning ikkala tarafidan \frac{1}{4} ni ayirish.