y uchun yechish
y=\frac{\sqrt{7}-5}{2}\approx -1,177124344
y=\frac{-\sqrt{7}-5}{2}\approx -3,822875656
Grafik
Baham ko'rish
Klipbordga nusxa olish
2y^{2}+10y=-9
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
2y^{2}+10y-\left(-9\right)=-9-\left(-9\right)
9 ni tenglamaning ikkala tarafiga qo'shish.
2y^{2}+10y-\left(-9\right)=0
O‘zidan -9 ayirilsa 0 qoladi.
2y^{2}+10y+9=0
0 dan -9 ni ayirish.
y=\frac{-10±\sqrt{10^{2}-4\times 2\times 9}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 10 ni b va 9 ni c bilan almashtiring.
y=\frac{-10±\sqrt{100-4\times 2\times 9}}{2\times 2}
10 kvadratini chiqarish.
y=\frac{-10±\sqrt{100-8\times 9}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
y=\frac{-10±\sqrt{100-72}}{2\times 2}
-8 ni 9 marotabaga ko'paytirish.
y=\frac{-10±\sqrt{28}}{2\times 2}
100 ni -72 ga qo'shish.
y=\frac{-10±2\sqrt{7}}{2\times 2}
28 ning kvadrat ildizini chiqarish.
y=\frac{-10±2\sqrt{7}}{4}
2 ni 2 marotabaga ko'paytirish.
y=\frac{2\sqrt{7}-10}{4}
y=\frac{-10±2\sqrt{7}}{4} tenglamasini yeching, bunda ± musbat. -10 ni 2\sqrt{7} ga qo'shish.
y=\frac{\sqrt{7}-5}{2}
-10+2\sqrt{7} ni 4 ga bo'lish.
y=\frac{-2\sqrt{7}-10}{4}
y=\frac{-10±2\sqrt{7}}{4} tenglamasini yeching, bunda ± manfiy. -10 dan 2\sqrt{7} ni ayirish.
y=\frac{-\sqrt{7}-5}{2}
-10-2\sqrt{7} ni 4 ga bo'lish.
y=\frac{\sqrt{7}-5}{2} y=\frac{-\sqrt{7}-5}{2}
Tenglama yechildi.
2y^{2}+10y=-9
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{2y^{2}+10y}{2}=-\frac{9}{2}
Ikki tarafini 2 ga bo‘ling.
y^{2}+\frac{10}{2}y=-\frac{9}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
y^{2}+5y=-\frac{9}{2}
10 ni 2 ga bo'lish.
y^{2}+5y+\left(\frac{5}{2}\right)^{2}=-\frac{9}{2}+\left(\frac{5}{2}\right)^{2}
5 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{2} olish uchun. Keyin, \frac{5}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}+5y+\frac{25}{4}=-\frac{9}{2}+\frac{25}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{2} kvadratini chiqarish.
y^{2}+5y+\frac{25}{4}=\frac{7}{4}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{9}{2} ni \frac{25}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(y+\frac{5}{2}\right)^{2}=\frac{7}{4}
y^{2}+5y+\frac{25}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y+\frac{5}{2}\right)^{2}}=\sqrt{\frac{7}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y+\frac{5}{2}=\frac{\sqrt{7}}{2} y+\frac{5}{2}=-\frac{\sqrt{7}}{2}
Qisqartirish.
y=\frac{\sqrt{7}-5}{2} y=\frac{-\sqrt{7}-5}{2}
Tenglamaning ikkala tarafidan \frac{5}{2} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}