Asosiy tarkibga oʻtish
y uchun yechish (complex solution)
Tick mark Image
y uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

y^{2}+2y-6=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
y=\frac{-2±\sqrt{2^{2}-4\left(-6\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 2 ni b va -6 ni c bilan almashtiring.
y=\frac{-2±\sqrt{4-4\left(-6\right)}}{2}
2 kvadratini chiqarish.
y=\frac{-2±\sqrt{4+24}}{2}
-4 ni -6 marotabaga ko'paytirish.
y=\frac{-2±\sqrt{28}}{2}
4 ni 24 ga qo'shish.
y=\frac{-2±2\sqrt{7}}{2}
28 ning kvadrat ildizini chiqarish.
y=\frac{2\sqrt{7}-2}{2}
y=\frac{-2±2\sqrt{7}}{2} tenglamasini yeching, bunda ± musbat. -2 ni 2\sqrt{7} ga qo'shish.
y=\sqrt{7}-1
-2+2\sqrt{7} ni 2 ga bo'lish.
y=\frac{-2\sqrt{7}-2}{2}
y=\frac{-2±2\sqrt{7}}{2} tenglamasini yeching, bunda ± manfiy. -2 dan 2\sqrt{7} ni ayirish.
y=-\sqrt{7}-1
-2-2\sqrt{7} ni 2 ga bo'lish.
y=\sqrt{7}-1 y=-\sqrt{7}-1
Tenglama yechildi.
y^{2}+2y-6=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
y^{2}+2y-6-\left(-6\right)=-\left(-6\right)
6 ni tenglamaning ikkala tarafiga qo'shish.
y^{2}+2y=-\left(-6\right)
O‘zidan -6 ayirilsa 0 qoladi.
y^{2}+2y=6
0 dan -6 ni ayirish.
y^{2}+2y+1^{2}=6+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}+2y+1=6+1
1 kvadratini chiqarish.
y^{2}+2y+1=7
6 ni 1 ga qo'shish.
\left(y+1\right)^{2}=7
y^{2}+2y+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y+1\right)^{2}}=\sqrt{7}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y+1=\sqrt{7} y+1=-\sqrt{7}
Qisqartirish.
y=\sqrt{7}-1 y=-\sqrt{7}-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
y^{2}+2y-6=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
y=\frac{-2±\sqrt{2^{2}-4\left(-6\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 2 ni b va -6 ni c bilan almashtiring.
y=\frac{-2±\sqrt{4-4\left(-6\right)}}{2}
2 kvadratini chiqarish.
y=\frac{-2±\sqrt{4+24}}{2}
-4 ni -6 marotabaga ko'paytirish.
y=\frac{-2±\sqrt{28}}{2}
4 ni 24 ga qo'shish.
y=\frac{-2±2\sqrt{7}}{2}
28 ning kvadrat ildizini chiqarish.
y=\frac{2\sqrt{7}-2}{2}
y=\frac{-2±2\sqrt{7}}{2} tenglamasini yeching, bunda ± musbat. -2 ni 2\sqrt{7} ga qo'shish.
y=\sqrt{7}-1
-2+2\sqrt{7} ni 2 ga bo'lish.
y=\frac{-2\sqrt{7}-2}{2}
y=\frac{-2±2\sqrt{7}}{2} tenglamasini yeching, bunda ± manfiy. -2 dan 2\sqrt{7} ni ayirish.
y=-\sqrt{7}-1
-2-2\sqrt{7} ni 2 ga bo'lish.
y=\sqrt{7}-1 y=-\sqrt{7}-1
Tenglama yechildi.
y^{2}+2y-6=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
y^{2}+2y-6-\left(-6\right)=-\left(-6\right)
6 ni tenglamaning ikkala tarafiga qo'shish.
y^{2}+2y=-\left(-6\right)
O‘zidan -6 ayirilsa 0 qoladi.
y^{2}+2y=6
0 dan -6 ni ayirish.
y^{2}+2y+1^{2}=6+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}+2y+1=6+1
1 kvadratini chiqarish.
y^{2}+2y+1=7
6 ni 1 ga qo'shish.
\left(y+1\right)^{2}=7
y^{2}+2y+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y+1\right)^{2}}=\sqrt{7}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y+1=\sqrt{7} y+1=-\sqrt{7}
Qisqartirish.
y=\sqrt{7}-1 y=-\sqrt{7}-1
Tenglamaning ikkala tarafidan 1 ni ayirish.