x_0 uchun yechish
x_{0} = \frac{\sqrt{17} + 3}{4} \approx 1,780776406
x_{0}=\frac{3-\sqrt{17}}{4}\approx -0,280776406
Viktorina
Quadratic Equation
5xshash muammolar:
2 x _ { 0 } = \frac { x _ { 0 } + 1 } { x _ { 0 } - 1 }
Baham ko'rish
Klipbordga nusxa olish
2x_{0}\left(x_{0}-1\right)=x_{0}+1
x_{0} qiymati 1 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x_{0}-1 ga ko'paytirish.
2x_{0}^{2}-2x_{0}=x_{0}+1
2x_{0} ga x_{0}-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x_{0}^{2}-2x_{0}-x_{0}=1
Ikkala tarafdan x_{0} ni ayirish.
2x_{0}^{2}-3x_{0}=1
-3x_{0} ni olish uchun -2x_{0} va -x_{0} ni birlashtirish.
2x_{0}^{2}-3x_{0}-1=0
Ikkala tarafdan 1 ni ayirish.
x_{0}=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-1\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -3 ni b va -1 ni c bilan almashtiring.
x_{0}=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-1\right)}}{2\times 2}
-3 kvadratini chiqarish.
x_{0}=\frac{-\left(-3\right)±\sqrt{9-8\left(-1\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x_{0}=\frac{-\left(-3\right)±\sqrt{9+8}}{2\times 2}
-8 ni -1 marotabaga ko'paytirish.
x_{0}=\frac{-\left(-3\right)±\sqrt{17}}{2\times 2}
9 ni 8 ga qo'shish.
x_{0}=\frac{3±\sqrt{17}}{2\times 2}
-3 ning teskarisi 3 ga teng.
x_{0}=\frac{3±\sqrt{17}}{4}
2 ni 2 marotabaga ko'paytirish.
x_{0}=\frac{\sqrt{17}+3}{4}
x_{0}=\frac{3±\sqrt{17}}{4} tenglamasini yeching, bunda ± musbat. 3 ni \sqrt{17} ga qo'shish.
x_{0}=\frac{3-\sqrt{17}}{4}
x_{0}=\frac{3±\sqrt{17}}{4} tenglamasini yeching, bunda ± manfiy. 3 dan \sqrt{17} ni ayirish.
x_{0}=\frac{\sqrt{17}+3}{4} x_{0}=\frac{3-\sqrt{17}}{4}
Tenglama yechildi.
2x_{0}\left(x_{0}-1\right)=x_{0}+1
x_{0} qiymati 1 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x_{0}-1 ga ko'paytirish.
2x_{0}^{2}-2x_{0}=x_{0}+1
2x_{0} ga x_{0}-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x_{0}^{2}-2x_{0}-x_{0}=1
Ikkala tarafdan x_{0} ni ayirish.
2x_{0}^{2}-3x_{0}=1
-3x_{0} ni olish uchun -2x_{0} va -x_{0} ni birlashtirish.
\frac{2x_{0}^{2}-3x_{0}}{2}=\frac{1}{2}
Ikki tarafini 2 ga bo‘ling.
x_{0}^{2}-\frac{3}{2}x_{0}=\frac{1}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x_{0}^{2}-\frac{3}{2}x_{0}+\left(-\frac{3}{4}\right)^{2}=\frac{1}{2}+\left(-\frac{3}{4}\right)^{2}
-\frac{3}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{4} olish uchun. Keyin, -\frac{3}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x_{0}^{2}-\frac{3}{2}x_{0}+\frac{9}{16}=\frac{1}{2}+\frac{9}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{4} kvadratini chiqarish.
x_{0}^{2}-\frac{3}{2}x_{0}+\frac{9}{16}=\frac{17}{16}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{2} ni \frac{9}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x_{0}-\frac{3}{4}\right)^{2}=\frac{17}{16}
x_{0}^{2}-\frac{3}{2}x_{0}+\frac{9}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x_{0}-\frac{3}{4}\right)^{2}}=\sqrt{\frac{17}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x_{0}-\frac{3}{4}=\frac{\sqrt{17}}{4} x_{0}-\frac{3}{4}=-\frac{\sqrt{17}}{4}
Qisqartirish.
x_{0}=\frac{\sqrt{17}+3}{4} x_{0}=\frac{3-\sqrt{17}}{4}
\frac{3}{4} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}