Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-49x^{2}+2x=3
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
-49x^{2}+2x-3=3-3
Tenglamaning ikkala tarafidan 3 ni ayirish.
-49x^{2}+2x-3=0
O‘zidan 3 ayirilsa 0 qoladi.
x=\frac{-2±\sqrt{2^{2}-4\left(-49\right)\left(-3\right)}}{2\left(-49\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -49 ni a, 2 ni b va -3 ni c bilan almashtiring.
x=\frac{-2±\sqrt{4-4\left(-49\right)\left(-3\right)}}{2\left(-49\right)}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4+196\left(-3\right)}}{2\left(-49\right)}
-4 ni -49 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{4-588}}{2\left(-49\right)}
196 ni -3 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{-584}}{2\left(-49\right)}
4 ni -588 ga qo'shish.
x=\frac{-2±2\sqrt{146}i}{2\left(-49\right)}
-584 ning kvadrat ildizini chiqarish.
x=\frac{-2±2\sqrt{146}i}{-98}
2 ni -49 marotabaga ko'paytirish.
x=\frac{-2+2\sqrt{146}i}{-98}
x=\frac{-2±2\sqrt{146}i}{-98} tenglamasini yeching, bunda ± musbat. -2 ni 2i\sqrt{146} ga qo'shish.
x=\frac{-\sqrt{146}i+1}{49}
-2+2i\sqrt{146} ni -98 ga bo'lish.
x=\frac{-2\sqrt{146}i-2}{-98}
x=\frac{-2±2\sqrt{146}i}{-98} tenglamasini yeching, bunda ± manfiy. -2 dan 2i\sqrt{146} ni ayirish.
x=\frac{1+\sqrt{146}i}{49}
-2-2i\sqrt{146} ni -98 ga bo'lish.
x=\frac{-\sqrt{146}i+1}{49} x=\frac{1+\sqrt{146}i}{49}
Tenglama yechildi.
-49x^{2}+2x=3
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-49x^{2}+2x}{-49}=\frac{3}{-49}
Ikki tarafini -49 ga bo‘ling.
x^{2}+\frac{2}{-49}x=\frac{3}{-49}
-49 ga bo'lish -49 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{2}{49}x=\frac{3}{-49}
2 ni -49 ga bo'lish.
x^{2}-\frac{2}{49}x=-\frac{3}{49}
3 ni -49 ga bo'lish.
x^{2}-\frac{2}{49}x+\left(-\frac{1}{49}\right)^{2}=-\frac{3}{49}+\left(-\frac{1}{49}\right)^{2}
-\frac{2}{49} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{49} olish uchun. Keyin, -\frac{1}{49} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{2}{49}x+\frac{1}{2401}=-\frac{3}{49}+\frac{1}{2401}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{49} kvadratini chiqarish.
x^{2}-\frac{2}{49}x+\frac{1}{2401}=-\frac{146}{2401}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{3}{49} ni \frac{1}{2401} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{49}\right)^{2}=-\frac{146}{2401}
x^{2}-\frac{2}{49}x+\frac{1}{2401} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{49}\right)^{2}}=\sqrt{-\frac{146}{2401}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{49}=\frac{\sqrt{146}i}{49} x-\frac{1}{49}=-\frac{\sqrt{146}i}{49}
Qisqartirish.
x=\frac{1+\sqrt{146}i}{49} x=\frac{-\sqrt{146}i+1}{49}
\frac{1}{49} ni tenglamaning ikkala tarafiga qo'shish.