x, y uchun yechish
x=-\frac{2}{13}\approx -0,153846154
y = \frac{42}{13} = 3\frac{3}{13} \approx 3,230769231
Grafik
Viktorina
Simultaneous Equation
5xshash muammolar:
2 x - 3 y + 10 = 0 \quad \text { KaHa } 5 x - y + 4 = 0
Baham ko'rish
Klipbordga nusxa olish
2x-3y+10=0,5x-y+4=0
Almashtirishdan foydalanib tenglamalar juftligini yechish uchun, avval o'zgaruvchan qiymatlardan biri uchun tenglamani yeching. So'ngra ana shu o'zgaruvchan natijani boshqa tenglama bilan almashtiring.
2x-3y+10=0
Tenglamalardan birini tanlang va teng belgisining chap tomonidagi x ni izolyatsiyalash orqali x ni hisoblang.
2x-3y=-10
Tenglamaning ikkala tarafidan 10 ni ayirish.
2x=3y-10
3y ni tenglamaning ikkala tarafiga qo'shish.
x=\frac{1}{2}\left(3y-10\right)
Ikki tarafini 2 ga bo‘ling.
x=\frac{3}{2}y-5
\frac{1}{2} ni 3y-10 marotabaga ko'paytirish.
5\left(\frac{3}{2}y-5\right)-y+4=0
\frac{3y}{2}-5 ni x uchun boshqa tenglamada almashtirish, 5x-y+4=0.
\frac{15}{2}y-25-y+4=0
5 ni \frac{3y}{2}-5 marotabaga ko'paytirish.
\frac{13}{2}y-25+4=0
\frac{15y}{2} ni -y ga qo'shish.
\frac{13}{2}y-21=0
-25 ni 4 ga qo'shish.
\frac{13}{2}y=21
21 ni tenglamaning ikkala tarafiga qo'shish.
y=\frac{42}{13}
Tenglamaning ikki tarafini \frac{13}{2} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
x=\frac{3}{2}\times \frac{42}{13}-5
\frac{42}{13} ni y uchun x=\frac{3}{2}y-5 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
x=\frac{63}{13}-5
Raqamlash sonlarini va maxraj sonlariga ko'paytirish orqali \frac{3}{2} ni \frac{42}{13} ga ko'paytirish. So'ngra kasrni imkoni boricha eng kam a'zoga qisqartiring.
x=-\frac{2}{13}
-5 ni \frac{63}{13} ga qo'shish.
x=-\frac{2}{13},y=\frac{42}{13}
Tizim hal qilindi.
2x-3y+10=0,5x-y+4=0
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}2&-3\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\-4\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}2&-3\\5&-1\end{matrix}\right))\left(\begin{matrix}2&-3\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\5&-1\end{matrix}\right))\left(\begin{matrix}-10\\-4\end{matrix}\right)
\left(\begin{matrix}2&-3\\5&-1\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\5&-1\end{matrix}\right))\left(\begin{matrix}-10\\-4\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\5&-1\end{matrix}\right))\left(\begin{matrix}-10\\-4\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-\left(-3\times 5\right)}&-\frac{-3}{2\left(-1\right)-\left(-3\times 5\right)}\\-\frac{5}{2\left(-1\right)-\left(-3\times 5\right)}&\frac{2}{2\left(-1\right)-\left(-3\times 5\right)}\end{matrix}\right)\left(\begin{matrix}-10\\-4\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{13}&\frac{3}{13}\\-\frac{5}{13}&\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}-10\\-4\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{13}\left(-10\right)+\frac{3}{13}\left(-4\right)\\-\frac{5}{13}\left(-10\right)+\frac{2}{13}\left(-4\right)\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{13}\\\frac{42}{13}\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
x=-\frac{2}{13},y=\frac{42}{13}
x va y matritsa elementlarini chiqarib olish.
2x-3y+10=0,5x-y+4=0
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
5\times 2x+5\left(-3\right)y+5\times 10=0,2\times 5x+2\left(-1\right)y+2\times 4=0
2x va 5x ni teng qilish uchun birinchi tenglamaning har bir tarafida barcha shartlarni 5 ga va ikkinchining har bir tarafidagi barcha shartlarni 2 ga ko'paytiring.
10x-15y+50=0,10x-2y+8=0
Qisqartirish.
10x-10x-15y+2y+50-8=0
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali 10x-15y+50=0 dan 10x-2y+8=0 ni ayirish.
-15y+2y+50-8=0
10x ni -10x ga qo'shish. 10x va -10x shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
-13y+50-8=0
-15y ni 2y ga qo'shish.
-13y+42=0
50 ni -8 ga qo'shish.
-13y=-42
Tenglamaning ikkala tarafidan 42 ni ayirish.
y=\frac{42}{13}
Ikki tarafini -13 ga bo‘ling.
5x-\frac{42}{13}+4=0
\frac{42}{13} ni y uchun 5x-y+4=0 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
5x+\frac{10}{13}=0
-\frac{42}{13} ni 4 ga qo'shish.
5x=-\frac{10}{13}
Tenglamaning ikkala tarafidan \frac{10}{13} ni ayirish.
x=-\frac{2}{13}
Ikki tarafini 5 ga bo‘ling.
x=-\frac{2}{13},y=\frac{42}{13}
Tizim hal qilindi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}