Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-3x^{2}+2x-4=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-2±\sqrt{2^{2}-4\left(-3\right)\left(-4\right)}}{2\left(-3\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -3 ni a, 2 ni b va -4 ni c bilan almashtiring.
x=\frac{-2±\sqrt{4-4\left(-3\right)\left(-4\right)}}{2\left(-3\right)}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4+12\left(-4\right)}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{4-48}}{2\left(-3\right)}
12 ni -4 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{-44}}{2\left(-3\right)}
4 ni -48 ga qo'shish.
x=\frac{-2±2\sqrt{11}i}{2\left(-3\right)}
-44 ning kvadrat ildizini chiqarish.
x=\frac{-2±2\sqrt{11}i}{-6}
2 ni -3 marotabaga ko'paytirish.
x=\frac{-2+2\sqrt{11}i}{-6}
x=\frac{-2±2\sqrt{11}i}{-6} tenglamasini yeching, bunda ± musbat. -2 ni 2i\sqrt{11} ga qo'shish.
x=\frac{-\sqrt{11}i+1}{3}
-2+2i\sqrt{11} ni -6 ga bo'lish.
x=\frac{-2\sqrt{11}i-2}{-6}
x=\frac{-2±2\sqrt{11}i}{-6} tenglamasini yeching, bunda ± manfiy. -2 dan 2i\sqrt{11} ni ayirish.
x=\frac{1+\sqrt{11}i}{3}
-2-2i\sqrt{11} ni -6 ga bo'lish.
x=\frac{-\sqrt{11}i+1}{3} x=\frac{1+\sqrt{11}i}{3}
Tenglama yechildi.
-3x^{2}+2x-4=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-3x^{2}+2x-4-\left(-4\right)=-\left(-4\right)
4 ni tenglamaning ikkala tarafiga qo'shish.
-3x^{2}+2x=-\left(-4\right)
O‘zidan -4 ayirilsa 0 qoladi.
-3x^{2}+2x=4
0 dan -4 ni ayirish.
\frac{-3x^{2}+2x}{-3}=\frac{4}{-3}
Ikki tarafini -3 ga bo‘ling.
x^{2}+\frac{2}{-3}x=\frac{4}{-3}
-3 ga bo'lish -3 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{2}{3}x=\frac{4}{-3}
2 ni -3 ga bo'lish.
x^{2}-\frac{2}{3}x=-\frac{4}{3}
4 ni -3 ga bo'lish.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=-\frac{4}{3}+\left(-\frac{1}{3}\right)^{2}
-\frac{2}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{3} olish uchun. Keyin, -\frac{1}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{2}{3}x+\frac{1}{9}=-\frac{4}{3}+\frac{1}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{3} kvadratini chiqarish.
x^{2}-\frac{2}{3}x+\frac{1}{9}=-\frac{11}{9}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{4}{3} ni \frac{1}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{3}\right)^{2}=-\frac{11}{9}
x^{2}-\frac{2}{3}x+\frac{1}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{-\frac{11}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{3}=\frac{\sqrt{11}i}{3} x-\frac{1}{3}=-\frac{\sqrt{11}i}{3}
Qisqartirish.
x=\frac{1+\sqrt{11}i}{3} x=\frac{-\sqrt{11}i+1}{3}
\frac{1}{3} ni tenglamaning ikkala tarafiga qo'shish.