Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x\left(x+4\right)-9=3x-6
x qiymati -4 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x+4 ga ko'paytirish.
2x^{2}+8x-9=3x-6
2x ga x+4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}+8x-9-3x=-6
Ikkala tarafdan 3x ni ayirish.
2x^{2}+5x-9=-6
5x ni olish uchun 8x va -3x ni birlashtirish.
2x^{2}+5x-9+6=0
6 ni ikki tarafga qo’shing.
2x^{2}+5x-3=0
-3 olish uchun -9 va 6'ni qo'shing.
x=\frac{-5±\sqrt{5^{2}-4\times 2\left(-3\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 5 ni b va -3 ni c bilan almashtiring.
x=\frac{-5±\sqrt{25-4\times 2\left(-3\right)}}{2\times 2}
5 kvadratini chiqarish.
x=\frac{-5±\sqrt{25-8\left(-3\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-5±\sqrt{25+24}}{2\times 2}
-8 ni -3 marotabaga ko'paytirish.
x=\frac{-5±\sqrt{49}}{2\times 2}
25 ni 24 ga qo'shish.
x=\frac{-5±7}{2\times 2}
49 ning kvadrat ildizini chiqarish.
x=\frac{-5±7}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{2}{4}
x=\frac{-5±7}{4} tenglamasini yeching, bunda ± musbat. -5 ni 7 ga qo'shish.
x=\frac{1}{2}
\frac{2}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{12}{4}
x=\frac{-5±7}{4} tenglamasini yeching, bunda ± manfiy. -5 dan 7 ni ayirish.
x=-3
-12 ni 4 ga bo'lish.
x=\frac{1}{2} x=-3
Tenglama yechildi.
2x\left(x+4\right)-9=3x-6
x qiymati -4 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x+4 ga ko'paytirish.
2x^{2}+8x-9=3x-6
2x ga x+4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}+8x-9-3x=-6
Ikkala tarafdan 3x ni ayirish.
2x^{2}+5x-9=-6
5x ni olish uchun 8x va -3x ni birlashtirish.
2x^{2}+5x=-6+9
9 ni ikki tarafga qo’shing.
2x^{2}+5x=3
3 olish uchun -6 va 9'ni qo'shing.
\frac{2x^{2}+5x}{2}=\frac{3}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\frac{5}{2}x=\frac{3}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{5}{2}x+\left(\frac{5}{4}\right)^{2}=\frac{3}{2}+\left(\frac{5}{4}\right)^{2}
\frac{5}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{4} olish uchun. Keyin, \frac{5}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{3}{2}+\frac{25}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{4} kvadratini chiqarish.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{49}{16}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{3}{2} ni \frac{25}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{5}{4}\right)^{2}=\frac{49}{16}
x^{2}+\frac{5}{2}x+\frac{25}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{5}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{5}{4}=\frac{7}{4} x+\frac{5}{4}=-\frac{7}{4}
Qisqartirish.
x=\frac{1}{2} x=-3
Tenglamaning ikkala tarafidan \frac{5}{4} ni ayirish.