x uchun yechish
x = -\frac{7}{2} = -3\frac{1}{2} = -3,5
x=4
Grafik
Baham ko'rish
Klipbordga nusxa olish
2x\left(x+3\right)-7=7\left(x+3\right)
x qiymati -3 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x+3 ga ko'paytirish.
2x^{2}+6x-7=7\left(x+3\right)
2x ga x+3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}+6x-7=7x+21
7 ga x+3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}+6x-7-7x=21
Ikkala tarafdan 7x ni ayirish.
2x^{2}-x-7=21
-x ni olish uchun 6x va -7x ni birlashtirish.
2x^{2}-x-7-21=0
Ikkala tarafdan 21 ni ayirish.
2x^{2}-x-28=0
-28 olish uchun -7 dan 21 ni ayirish.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-28\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -1 ni b va -28 ni c bilan almashtiring.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-28\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{1+224}}{2\times 2}
-8 ni -28 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{225}}{2\times 2}
1 ni 224 ga qo'shish.
x=\frac{-\left(-1\right)±15}{2\times 2}
225 ning kvadrat ildizini chiqarish.
x=\frac{1±15}{2\times 2}
-1 ning teskarisi 1 ga teng.
x=\frac{1±15}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{16}{4}
x=\frac{1±15}{4} tenglamasini yeching, bunda ± musbat. 1 ni 15 ga qo'shish.
x=4
16 ni 4 ga bo'lish.
x=-\frac{14}{4}
x=\frac{1±15}{4} tenglamasini yeching, bunda ± manfiy. 1 dan 15 ni ayirish.
x=-\frac{7}{2}
\frac{-14}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=4 x=-\frac{7}{2}
Tenglama yechildi.
2x\left(x+3\right)-7=7\left(x+3\right)
x qiymati -3 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x+3 ga ko'paytirish.
2x^{2}+6x-7=7\left(x+3\right)
2x ga x+3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}+6x-7=7x+21
7 ga x+3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}+6x-7-7x=21
Ikkala tarafdan 7x ni ayirish.
2x^{2}-x-7=21
-x ni olish uchun 6x va -7x ni birlashtirish.
2x^{2}-x=21+7
7 ni ikki tarafga qo’shing.
2x^{2}-x=28
28 olish uchun 21 va 7'ni qo'shing.
\frac{2x^{2}-x}{2}=\frac{28}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}-\frac{1}{2}x=\frac{28}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1}{2}x=14
28 ni 2 ga bo'lish.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=14+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{4} olish uchun. Keyin, -\frac{1}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1}{2}x+\frac{1}{16}=14+\frac{1}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{4} kvadratini chiqarish.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{225}{16}
14 ni \frac{1}{16} ga qo'shish.
\left(x-\frac{1}{4}\right)^{2}=\frac{225}{16}
x^{2}-\frac{1}{2}x+\frac{1}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{225}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{4}=\frac{15}{4} x-\frac{1}{4}=-\frac{15}{4}
Qisqartirish.
x=4 x=-\frac{7}{2}
\frac{1}{4} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}