x uchun yechish
x = -\frac{5}{2} = -2\frac{1}{2} = -2,5
x=1
Grafik
Baham ko'rish
Klipbordga nusxa olish
2x^{2}-10x+3x=10\left(\frac{1}{2}-x\right)
2x ga x-5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}-7x=10\left(\frac{1}{2}-x\right)
-7x ni olish uchun -10x va 3x ni birlashtirish.
2x^{2}-7x=10\times \frac{1}{2}-10x
10 ga \frac{1}{2}-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}-7x=\frac{10}{2}-10x
\frac{10}{2} hosil qilish uchun 10 va \frac{1}{2} ni ko'paytirish.
2x^{2}-7x=5-10x
5 ni olish uchun 10 ni 2 ga bo‘ling.
2x^{2}-7x-5=-10x
Ikkala tarafdan 5 ni ayirish.
2x^{2}-7x-5+10x=0
10x ni ikki tarafga qo’shing.
2x^{2}+3x-5=0
3x ni olish uchun -7x va 10x ni birlashtirish.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-5\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 3 ni b va -5 ni c bilan almashtiring.
x=\frac{-3±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
3 kvadratini chiqarish.
x=\frac{-3±\sqrt{9-8\left(-5\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{9+40}}{2\times 2}
-8 ni -5 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{49}}{2\times 2}
9 ni 40 ga qo'shish.
x=\frac{-3±7}{2\times 2}
49 ning kvadrat ildizini chiqarish.
x=\frac{-3±7}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{4}{4}
x=\frac{-3±7}{4} tenglamasini yeching, bunda ± musbat. -3 ni 7 ga qo'shish.
x=1
4 ni 4 ga bo'lish.
x=-\frac{10}{4}
x=\frac{-3±7}{4} tenglamasini yeching, bunda ± manfiy. -3 dan 7 ni ayirish.
x=-\frac{5}{2}
\frac{-10}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=1 x=-\frac{5}{2}
Tenglama yechildi.
2x^{2}-10x+3x=10\left(\frac{1}{2}-x\right)
2x ga x-5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}-7x=10\left(\frac{1}{2}-x\right)
-7x ni olish uchun -10x va 3x ni birlashtirish.
2x^{2}-7x=10\times \frac{1}{2}-10x
10 ga \frac{1}{2}-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}-7x=\frac{10}{2}-10x
\frac{10}{2} hosil qilish uchun 10 va \frac{1}{2} ni ko'paytirish.
2x^{2}-7x=5-10x
5 ni olish uchun 10 ni 2 ga bo‘ling.
2x^{2}-7x+10x=5
10x ni ikki tarafga qo’shing.
2x^{2}+3x=5
3x ni olish uchun -7x va 10x ni birlashtirish.
\frac{2x^{2}+3x}{2}=\frac{5}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\frac{3}{2}x=\frac{5}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=\frac{5}{2}+\left(\frac{3}{4}\right)^{2}
\frac{3}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{4} olish uchun. Keyin, \frac{3}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{5}{2}+\frac{9}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{4} kvadratini chiqarish.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{49}{16}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{5}{2} ni \frac{9}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{3}{4}\right)^{2}=\frac{49}{16}
x^{2}+\frac{3}{2}x+\frac{9}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{4}=\frac{7}{4} x+\frac{3}{4}=-\frac{7}{4}
Qisqartirish.
x=1 x=-\frac{5}{2}
Tenglamaning ikkala tarafidan \frac{3}{4} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}