Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}-2x=4
2x ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}-2x-4=0
Ikkala tarafdan 4 ni ayirish.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\left(-4\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -2 ni b va -4 ni c bilan almashtiring.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 2\left(-4\right)}}{2\times 2}
-2 kvadratini chiqarish.
x=\frac{-\left(-2\right)±\sqrt{4-8\left(-4\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-2\right)±\sqrt{4+32}}{2\times 2}
-8 ni -4 marotabaga ko'paytirish.
x=\frac{-\left(-2\right)±\sqrt{36}}{2\times 2}
4 ni 32 ga qo'shish.
x=\frac{-\left(-2\right)±6}{2\times 2}
36 ning kvadrat ildizini chiqarish.
x=\frac{2±6}{2\times 2}
-2 ning teskarisi 2 ga teng.
x=\frac{2±6}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{8}{4}
x=\frac{2±6}{4} tenglamasini yeching, bunda ± musbat. 2 ni 6 ga qo'shish.
x=2
8 ni 4 ga bo'lish.
x=-\frac{4}{4}
x=\frac{2±6}{4} tenglamasini yeching, bunda ± manfiy. 2 dan 6 ni ayirish.
x=-1
-4 ni 4 ga bo'lish.
x=2 x=-1
Tenglama yechildi.
2x^{2}-2x=4
2x ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{2x^{2}-2x}{2}=\frac{4}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\left(-\frac{2}{2}\right)x=\frac{4}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-x=\frac{4}{2}
-2 ni 2 ga bo'lish.
x^{2}-x=2
4 ni 2 ga bo'lish.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=2+\left(-\frac{1}{2}\right)^{2}
-1 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{2} olish uchun. Keyin, -\frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-x+\frac{1}{4}=2+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{2} kvadratini chiqarish.
x^{2}-x+\frac{1}{4}=\frac{9}{4}
2 ni \frac{1}{4} ga qo'shish.
\left(x-\frac{1}{2}\right)^{2}=\frac{9}{4}
x^{2}-x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{2}=\frac{3}{2} x-\frac{1}{2}=-\frac{3}{2}
Qisqartirish.
x=2 x=-1
\frac{1}{2} ni tenglamaning ikkala tarafiga qo'shish.