Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}+8x=1
2x ga x+4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}+8x-1=0
Ikkala tarafdan 1 ni ayirish.
x=\frac{-8±\sqrt{8^{2}-4\times 2\left(-1\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 8 ni b va -1 ni c bilan almashtiring.
x=\frac{-8±\sqrt{64-4\times 2\left(-1\right)}}{2\times 2}
8 kvadratini chiqarish.
x=\frac{-8±\sqrt{64-8\left(-1\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-8±\sqrt{64+8}}{2\times 2}
-8 ni -1 marotabaga ko'paytirish.
x=\frac{-8±\sqrt{72}}{2\times 2}
64 ni 8 ga qo'shish.
x=\frac{-8±6\sqrt{2}}{2\times 2}
72 ning kvadrat ildizini chiqarish.
x=\frac{-8±6\sqrt{2}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{6\sqrt{2}-8}{4}
x=\frac{-8±6\sqrt{2}}{4} tenglamasini yeching, bunda ± musbat. -8 ni 6\sqrt{2} ga qo'shish.
x=\frac{3\sqrt{2}}{2}-2
-8+6\sqrt{2} ni 4 ga bo'lish.
x=\frac{-6\sqrt{2}-8}{4}
x=\frac{-8±6\sqrt{2}}{4} tenglamasini yeching, bunda ± manfiy. -8 dan 6\sqrt{2} ni ayirish.
x=-\frac{3\sqrt{2}}{2}-2
-8-6\sqrt{2} ni 4 ga bo'lish.
x=\frac{3\sqrt{2}}{2}-2 x=-\frac{3\sqrt{2}}{2}-2
Tenglama yechildi.
2x^{2}+8x=1
2x ga x+4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{2x^{2}+8x}{2}=\frac{1}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\frac{8}{2}x=\frac{1}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}+4x=\frac{1}{2}
8 ni 2 ga bo'lish.
x^{2}+4x+2^{2}=\frac{1}{2}+2^{2}
4 ni bo‘lish, x shartining koeffitsienti, 2 ga 2 olish uchun. Keyin, 2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+4x+4=\frac{1}{2}+4
2 kvadratini chiqarish.
x^{2}+4x+4=\frac{9}{2}
\frac{1}{2} ni 4 ga qo'shish.
\left(x+2\right)^{2}=\frac{9}{2}
x^{2}+4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+2\right)^{2}}=\sqrt{\frac{9}{2}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+2=\frac{3\sqrt{2}}{2} x+2=-\frac{3\sqrt{2}}{2}
Qisqartirish.
x=\frac{3\sqrt{2}}{2}-2 x=-\frac{3\sqrt{2}}{2}-2
Tenglamaning ikkala tarafidan 2 ni ayirish.