Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}+30x=-1
2x ga x+15 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}+30x+1=0
1 ni ikki tarafga qo’shing.
x=\frac{-30±\sqrt{30^{2}-4\times 2}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 30 ni b va 1 ni c bilan almashtiring.
x=\frac{-30±\sqrt{900-4\times 2}}{2\times 2}
30 kvadratini chiqarish.
x=\frac{-30±\sqrt{900-8}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-30±\sqrt{892}}{2\times 2}
900 ni -8 ga qo'shish.
x=\frac{-30±2\sqrt{223}}{2\times 2}
892 ning kvadrat ildizini chiqarish.
x=\frac{-30±2\sqrt{223}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{2\sqrt{223}-30}{4}
x=\frac{-30±2\sqrt{223}}{4} tenglamasini yeching, bunda ± musbat. -30 ni 2\sqrt{223} ga qo'shish.
x=\frac{\sqrt{223}-15}{2}
-30+2\sqrt{223} ni 4 ga bo'lish.
x=\frac{-2\sqrt{223}-30}{4}
x=\frac{-30±2\sqrt{223}}{4} tenglamasini yeching, bunda ± manfiy. -30 dan 2\sqrt{223} ni ayirish.
x=\frac{-\sqrt{223}-15}{2}
-30-2\sqrt{223} ni 4 ga bo'lish.
x=\frac{\sqrt{223}-15}{2} x=\frac{-\sqrt{223}-15}{2}
Tenglama yechildi.
2x^{2}+30x=-1
2x ga x+15 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{2x^{2}+30x}{2}=-\frac{1}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\frac{30}{2}x=-\frac{1}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}+15x=-\frac{1}{2}
30 ni 2 ga bo'lish.
x^{2}+15x+\left(\frac{15}{2}\right)^{2}=-\frac{1}{2}+\left(\frac{15}{2}\right)^{2}
15 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{15}{2} olish uchun. Keyin, \frac{15}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+15x+\frac{225}{4}=-\frac{1}{2}+\frac{225}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{15}{2} kvadratini chiqarish.
x^{2}+15x+\frac{225}{4}=\frac{223}{4}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{1}{2} ni \frac{225}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{15}{2}\right)^{2}=\frac{223}{4}
x^{2}+15x+\frac{225}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{15}{2}\right)^{2}}=\sqrt{\frac{223}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{15}{2}=\frac{\sqrt{223}}{2} x+\frac{15}{2}=-\frac{\sqrt{223}}{2}
Qisqartirish.
x=\frac{\sqrt{223}-15}{2} x=\frac{-\sqrt{223}-15}{2}
Tenglamaning ikkala tarafidan \frac{15}{2} ni ayirish.