Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

6x^{2}-12x=3\left(3x-6\right)
2x ga 3x-6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6x^{2}-12x=9x-18
3 ga 3x-6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6x^{2}-12x-9x=-18
Ikkala tarafdan 9x ni ayirish.
6x^{2}-21x=-18
-21x ni olish uchun -12x va -9x ni birlashtirish.
6x^{2}-21x+18=0
18 ni ikki tarafga qo’shing.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 6\times 18}}{2\times 6}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 6 ni a, -21 ni b va 18 ni c bilan almashtiring.
x=\frac{-\left(-21\right)±\sqrt{441-4\times 6\times 18}}{2\times 6}
-21 kvadratini chiqarish.
x=\frac{-\left(-21\right)±\sqrt{441-24\times 18}}{2\times 6}
-4 ni 6 marotabaga ko'paytirish.
x=\frac{-\left(-21\right)±\sqrt{441-432}}{2\times 6}
-24 ni 18 marotabaga ko'paytirish.
x=\frac{-\left(-21\right)±\sqrt{9}}{2\times 6}
441 ni -432 ga qo'shish.
x=\frac{-\left(-21\right)±3}{2\times 6}
9 ning kvadrat ildizini chiqarish.
x=\frac{21±3}{2\times 6}
-21 ning teskarisi 21 ga teng.
x=\frac{21±3}{12}
2 ni 6 marotabaga ko'paytirish.
x=\frac{24}{12}
x=\frac{21±3}{12} tenglamasini yeching, bunda ± musbat. 21 ni 3 ga qo'shish.
x=2
24 ni 12 ga bo'lish.
x=\frac{18}{12}
x=\frac{21±3}{12} tenglamasini yeching, bunda ± manfiy. 21 dan 3 ni ayirish.
x=\frac{3}{2}
\frac{18}{12} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=2 x=\frac{3}{2}
Tenglama yechildi.
6x^{2}-12x=3\left(3x-6\right)
2x ga 3x-6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6x^{2}-12x=9x-18
3 ga 3x-6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6x^{2}-12x-9x=-18
Ikkala tarafdan 9x ni ayirish.
6x^{2}-21x=-18
-21x ni olish uchun -12x va -9x ni birlashtirish.
\frac{6x^{2}-21x}{6}=-\frac{18}{6}
Ikki tarafini 6 ga bo‘ling.
x^{2}+\left(-\frac{21}{6}\right)x=-\frac{18}{6}
6 ga bo'lish 6 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{7}{2}x=-\frac{18}{6}
\frac{-21}{6} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{7}{2}x=-3
-18 ni 6 ga bo'lish.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=-3+\left(-\frac{7}{4}\right)^{2}
-\frac{7}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{7}{4} olish uchun. Keyin, -\frac{7}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{7}{2}x+\frac{49}{16}=-3+\frac{49}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{7}{4} kvadratini chiqarish.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{1}{16}
-3 ni \frac{49}{16} ga qo'shish.
\left(x-\frac{7}{4}\right)^{2}=\frac{1}{16}
x^{2}-\frac{7}{2}x+\frac{49}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{7}{4}=\frac{1}{4} x-\frac{7}{4}=-\frac{1}{4}
Qisqartirish.
x=2 x=\frac{3}{2}
\frac{7}{4} ni tenglamaning ikkala tarafiga qo'shish.