Baholash
x^{3}-3x^{2}+3x+3
x ga nisbatan hosilani topish
3\left(x-1\right)^{2}
Grafik
Baham ko'rish
Klipbordga nusxa olish
2x^{2}+2x^{3}-x-x^{3}+4x+3-5x^{2}
2x^{3} ni olish uchun -x^{3} va 3x^{3} ni birlashtirish.
2x^{2}+x^{3}-x+4x+3-5x^{2}
x^{3} ni olish uchun 2x^{3} va -x^{3} ni birlashtirish.
2x^{2}+x^{3}+3x+3-5x^{2}
3x ni olish uchun -x va 4x ni birlashtirish.
-3x^{2}+x^{3}+3x+3
-3x^{2} ni olish uchun 2x^{2} va -5x^{2} ni birlashtirish.
\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}+2x^{3}-x-x^{3}+4x+3-5x^{2})
2x^{3} ni olish uchun -x^{3} va 3x^{3} ni birlashtirish.
\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}+x^{3}-x+4x+3-5x^{2})
x^{3} ni olish uchun 2x^{3} va -x^{3} ni birlashtirish.
\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}+x^{3}+3x+3-5x^{2})
3x ni olish uchun -x va 4x ni birlashtirish.
\frac{\mathrm{d}}{\mathrm{d}x}(-3x^{2}+x^{3}+3x+3)
-3x^{2} ni olish uchun 2x^{2} va -5x^{2} ni birlashtirish.
2\left(-3\right)x^{2-1}+3x^{3-1}+3x^{1-1}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
-6x^{2-1}+3x^{3-1}+3x^{1-1}
2 ni -3 marotabaga ko'paytirish.
-6x^{1}+3x^{3-1}+3x^{1-1}
2 dan 1 ni ayirish.
-6x^{1}+3x^{2}+3x^{1-1}
3 dan 1 ni ayirish.
-6x^{1}+3x^{2}+3x^{0}
1 dan 1 ni ayirish.
-6x+3x^{2}+3x^{0}
Har qanday t sharti uchun t^{1}=t.
-6x+3x^{2}+3\times 1
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.
-6x+3x^{2}+3
Har qanday t sharti uchun t\times 1=t va 1t=t.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}