Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}-70x+1225=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-70\right)±\sqrt{\left(-70\right)^{2}-4\times 2\times 1225}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -70 ni b va 1225 ni c bilan almashtiring.
x=\frac{-\left(-70\right)±\sqrt{4900-4\times 2\times 1225}}{2\times 2}
-70 kvadratini chiqarish.
x=\frac{-\left(-70\right)±\sqrt{4900-8\times 1225}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-70\right)±\sqrt{4900-9800}}{2\times 2}
-8 ni 1225 marotabaga ko'paytirish.
x=\frac{-\left(-70\right)±\sqrt{-4900}}{2\times 2}
4900 ni -9800 ga qo'shish.
x=\frac{-\left(-70\right)±70i}{2\times 2}
-4900 ning kvadrat ildizini chiqarish.
x=\frac{70±70i}{2\times 2}
-70 ning teskarisi 70 ga teng.
x=\frac{70±70i}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{70+70i}{4}
x=\frac{70±70i}{4} tenglamasini yeching, bunda ± musbat. 70 ni 70i ga qo'shish.
x=\frac{35}{2}+\frac{35}{2}i
70+70i ni 4 ga bo'lish.
x=\frac{70-70i}{4}
x=\frac{70±70i}{4} tenglamasini yeching, bunda ± manfiy. 70 dan 70i ni ayirish.
x=\frac{35}{2}-\frac{35}{2}i
70-70i ni 4 ga bo'lish.
x=\frac{35}{2}+\frac{35}{2}i x=\frac{35}{2}-\frac{35}{2}i
Tenglama yechildi.
2x^{2}-70x+1225=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2x^{2}-70x+1225-1225=-1225
Tenglamaning ikkala tarafidan 1225 ni ayirish.
2x^{2}-70x=-1225
O‘zidan 1225 ayirilsa 0 qoladi.
\frac{2x^{2}-70x}{2}=-\frac{1225}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\left(-\frac{70}{2}\right)x=-\frac{1225}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-35x=-\frac{1225}{2}
-70 ni 2 ga bo'lish.
x^{2}-35x+\left(-\frac{35}{2}\right)^{2}=-\frac{1225}{2}+\left(-\frac{35}{2}\right)^{2}
-35 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{35}{2} olish uchun. Keyin, -\frac{35}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-35x+\frac{1225}{4}=-\frac{1225}{2}+\frac{1225}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{35}{2} kvadratini chiqarish.
x^{2}-35x+\frac{1225}{4}=-\frac{1225}{4}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{1225}{2} ni \frac{1225}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{35}{2}\right)^{2}=-\frac{1225}{4}
x^{2}-35x+\frac{1225}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{35}{2}\right)^{2}}=\sqrt{-\frac{1225}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{35}{2}=\frac{35}{2}i x-\frac{35}{2}=-\frac{35}{2}i
Qisqartirish.
x=\frac{35}{2}+\frac{35}{2}i x=\frac{35}{2}-\frac{35}{2}i
\frac{35}{2} ni tenglamaning ikkala tarafiga qo'shish.