Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}-64x+25=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-64\right)±\sqrt{\left(-64\right)^{2}-4\times 2\times 25}}{2\times 2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-64\right)±\sqrt{4096-4\times 2\times 25}}{2\times 2}
-64 kvadratini chiqarish.
x=\frac{-\left(-64\right)±\sqrt{4096-8\times 25}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-64\right)±\sqrt{4096-200}}{2\times 2}
-8 ni 25 marotabaga ko'paytirish.
x=\frac{-\left(-64\right)±\sqrt{3896}}{2\times 2}
4096 ni -200 ga qo'shish.
x=\frac{-\left(-64\right)±2\sqrt{974}}{2\times 2}
3896 ning kvadrat ildizini chiqarish.
x=\frac{64±2\sqrt{974}}{2\times 2}
-64 ning teskarisi 64 ga teng.
x=\frac{64±2\sqrt{974}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{2\sqrt{974}+64}{4}
x=\frac{64±2\sqrt{974}}{4} tenglamasini yeching, bunda ± musbat. 64 ni 2\sqrt{974} ga qo'shish.
x=\frac{\sqrt{974}}{2}+16
64+2\sqrt{974} ni 4 ga bo'lish.
x=\frac{64-2\sqrt{974}}{4}
x=\frac{64±2\sqrt{974}}{4} tenglamasini yeching, bunda ± manfiy. 64 dan 2\sqrt{974} ni ayirish.
x=-\frac{\sqrt{974}}{2}+16
64-2\sqrt{974} ni 4 ga bo'lish.
2x^{2}-64x+25=2\left(x-\left(\frac{\sqrt{974}}{2}+16\right)\right)\left(x-\left(-\frac{\sqrt{974}}{2}+16\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 16+\frac{\sqrt{974}}{2} ga va x_{2} uchun 16-\frac{\sqrt{974}}{2} ga bo‘ling.