Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}-6x+1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 2}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -6 ni b va 1 ni c bilan almashtiring.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 2}}{2\times 2}
-6 kvadratini chiqarish.
x=\frac{-\left(-6\right)±\sqrt{36-8}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{28}}{2\times 2}
36 ni -8 ga qo'shish.
x=\frac{-\left(-6\right)±2\sqrt{7}}{2\times 2}
28 ning kvadrat ildizini chiqarish.
x=\frac{6±2\sqrt{7}}{2\times 2}
-6 ning teskarisi 6 ga teng.
x=\frac{6±2\sqrt{7}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{2\sqrt{7}+6}{4}
x=\frac{6±2\sqrt{7}}{4} tenglamasini yeching, bunda ± musbat. 6 ni 2\sqrt{7} ga qo'shish.
x=\frac{\sqrt{7}+3}{2}
6+2\sqrt{7} ni 4 ga bo'lish.
x=\frac{6-2\sqrt{7}}{4}
x=\frac{6±2\sqrt{7}}{4} tenglamasini yeching, bunda ± manfiy. 6 dan 2\sqrt{7} ni ayirish.
x=\frac{3-\sqrt{7}}{2}
6-2\sqrt{7} ni 4 ga bo'lish.
x=\frac{\sqrt{7}+3}{2} x=\frac{3-\sqrt{7}}{2}
Tenglama yechildi.
2x^{2}-6x+1=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2x^{2}-6x+1-1=-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
2x^{2}-6x=-1
O‘zidan 1 ayirilsa 0 qoladi.
\frac{2x^{2}-6x}{2}=-\frac{1}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\left(-\frac{6}{2}\right)x=-\frac{1}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-3x=-\frac{1}{2}
-6 ni 2 ga bo'lish.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-\frac{1}{2}+\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-3x+\frac{9}{4}=-\frac{1}{2}+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
x^{2}-3x+\frac{9}{4}=\frac{7}{4}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{1}{2} ni \frac{9}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{3}{2}\right)^{2}=\frac{7}{4}
x^{2}-3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{7}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{2}=\frac{\sqrt{7}}{2} x-\frac{3}{2}=-\frac{\sqrt{7}}{2}
Qisqartirish.
x=\frac{\sqrt{7}+3}{2} x=\frac{3-\sqrt{7}}{2}
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.