x uchun yechish
x=20\sqrt{3895}+1250\approx 2498,19870213
x=1250-20\sqrt{3895}\approx 1,80129787
Grafik
Baham ko'rish
Klipbordga nusxa olish
2x^{2}-5000x+9000=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-5000\right)±\sqrt{\left(-5000\right)^{2}-4\times 2\times 9000}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -5000 ni b va 9000 ni c bilan almashtiring.
x=\frac{-\left(-5000\right)±\sqrt{25000000-4\times 2\times 9000}}{2\times 2}
-5000 kvadratini chiqarish.
x=\frac{-\left(-5000\right)±\sqrt{25000000-8\times 9000}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-5000\right)±\sqrt{25000000-72000}}{2\times 2}
-8 ni 9000 marotabaga ko'paytirish.
x=\frac{-\left(-5000\right)±\sqrt{24928000}}{2\times 2}
25000000 ni -72000 ga qo'shish.
x=\frac{-\left(-5000\right)±80\sqrt{3895}}{2\times 2}
24928000 ning kvadrat ildizini chiqarish.
x=\frac{5000±80\sqrt{3895}}{2\times 2}
-5000 ning teskarisi 5000 ga teng.
x=\frac{5000±80\sqrt{3895}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{80\sqrt{3895}+5000}{4}
x=\frac{5000±80\sqrt{3895}}{4} tenglamasini yeching, bunda ± musbat. 5000 ni 80\sqrt{3895} ga qo'shish.
x=20\sqrt{3895}+1250
5000+80\sqrt{3895} ni 4 ga bo'lish.
x=\frac{5000-80\sqrt{3895}}{4}
x=\frac{5000±80\sqrt{3895}}{4} tenglamasini yeching, bunda ± manfiy. 5000 dan 80\sqrt{3895} ni ayirish.
x=1250-20\sqrt{3895}
5000-80\sqrt{3895} ni 4 ga bo'lish.
x=20\sqrt{3895}+1250 x=1250-20\sqrt{3895}
Tenglama yechildi.
2x^{2}-5000x+9000=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2x^{2}-5000x+9000-9000=-9000
Tenglamaning ikkala tarafidan 9000 ni ayirish.
2x^{2}-5000x=-9000
O‘zidan 9000 ayirilsa 0 qoladi.
\frac{2x^{2}-5000x}{2}=-\frac{9000}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\left(-\frac{5000}{2}\right)x=-\frac{9000}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-2500x=-\frac{9000}{2}
-5000 ni 2 ga bo'lish.
x^{2}-2500x=-4500
-9000 ni 2 ga bo'lish.
x^{2}-2500x+\left(-1250\right)^{2}=-4500+\left(-1250\right)^{2}
-2500 ni bo‘lish, x shartining koeffitsienti, 2 ga -1250 olish uchun. Keyin, -1250 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-2500x+1562500=-4500+1562500
-1250 kvadratini chiqarish.
x^{2}-2500x+1562500=1558000
-4500 ni 1562500 ga qo'shish.
\left(x-1250\right)^{2}=1558000
x^{2}-2500x+1562500 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-1250\right)^{2}}=\sqrt{1558000}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-1250=20\sqrt{3895} x-1250=-20\sqrt{3895}
Qisqartirish.
x=20\sqrt{3895}+1250 x=1250-20\sqrt{3895}
1250 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}