x uchun yechish (complex solution)
x=1+\sqrt{5}i\approx 1+2,236067977i
x=-\sqrt{5}i+1\approx 1-2,236067977i
Grafik
Baham ko'rish
Klipbordga nusxa olish
2x^{2}-4x+12=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\times 12}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -4 ni b va 12 ni c bilan almashtiring.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\times 12}}{2\times 2}
-4 kvadratini chiqarish.
x=\frac{-\left(-4\right)±\sqrt{16-8\times 12}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{16-96}}{2\times 2}
-8 ni 12 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{-80}}{2\times 2}
16 ni -96 ga qo'shish.
x=\frac{-\left(-4\right)±4\sqrt{5}i}{2\times 2}
-80 ning kvadrat ildizini chiqarish.
x=\frac{4±4\sqrt{5}i}{2\times 2}
-4 ning teskarisi 4 ga teng.
x=\frac{4±4\sqrt{5}i}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{4+4\sqrt{5}i}{4}
x=\frac{4±4\sqrt{5}i}{4} tenglamasini yeching, bunda ± musbat. 4 ni 4i\sqrt{5} ga qo'shish.
x=1+\sqrt{5}i
4+4i\sqrt{5} ni 4 ga bo'lish.
x=\frac{-4\sqrt{5}i+4}{4}
x=\frac{4±4\sqrt{5}i}{4} tenglamasini yeching, bunda ± manfiy. 4 dan 4i\sqrt{5} ni ayirish.
x=-\sqrt{5}i+1
4-4i\sqrt{5} ni 4 ga bo'lish.
x=1+\sqrt{5}i x=-\sqrt{5}i+1
Tenglama yechildi.
2x^{2}-4x+12=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2x^{2}-4x+12-12=-12
Tenglamaning ikkala tarafidan 12 ni ayirish.
2x^{2}-4x=-12
O‘zidan 12 ayirilsa 0 qoladi.
\frac{2x^{2}-4x}{2}=-\frac{12}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\left(-\frac{4}{2}\right)x=-\frac{12}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-2x=-\frac{12}{2}
-4 ni 2 ga bo'lish.
x^{2}-2x=-6
-12 ni 2 ga bo'lish.
x^{2}-2x+1=-6+1
-2 ni bo‘lish, x shartining koeffitsienti, 2 ga -1 olish uchun. Keyin, -1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-2x+1=-5
-6 ni 1 ga qo'shish.
\left(x-1\right)^{2}=-5
x^{2}-2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-1\right)^{2}}=\sqrt{-5}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-1=\sqrt{5}i x-1=-\sqrt{5}i
Qisqartirish.
x=1+\sqrt{5}i x=-\sqrt{5}i+1
1 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}