Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}-29x-36=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-29\right)±\sqrt{\left(-29\right)^{2}-4\times 2\left(-36\right)}}{2\times 2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-29\right)±\sqrt{841-4\times 2\left(-36\right)}}{2\times 2}
-29 kvadratini chiqarish.
x=\frac{-\left(-29\right)±\sqrt{841-8\left(-36\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-29\right)±\sqrt{841+288}}{2\times 2}
-8 ni -36 marotabaga ko'paytirish.
x=\frac{-\left(-29\right)±\sqrt{1129}}{2\times 2}
841 ni 288 ga qo'shish.
x=\frac{29±\sqrt{1129}}{2\times 2}
-29 ning teskarisi 29 ga teng.
x=\frac{29±\sqrt{1129}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{\sqrt{1129}+29}{4}
x=\frac{29±\sqrt{1129}}{4} tenglamasini yeching, bunda ± musbat. 29 ni \sqrt{1129} ga qo'shish.
x=\frac{29-\sqrt{1129}}{4}
x=\frac{29±\sqrt{1129}}{4} tenglamasini yeching, bunda ± manfiy. 29 dan \sqrt{1129} ni ayirish.
2x^{2}-29x-36=2\left(x-\frac{\sqrt{1129}+29}{4}\right)\left(x-\frac{29-\sqrt{1129}}{4}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{29+\sqrt{1129}}{4} ga va x_{2} uchun \frac{29-\sqrt{1129}}{4} ga bo‘ling.